cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A280618 Expansion of (Sum_{k>=1} x^(k^3))^2.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 06 2017

Keywords

Comments

Number of ways to write n as an ordered sum of two positive cubes.

Examples

			a(9) = 2 because we have [8, 1] and [1, 8].
		

Crossrefs

Cf. A000578, A001235 (positions of terms > 3), A003325 (of nonzero terms), A010057, A063725, A173677.

Programs

  • Mathematica
    nmax = 150; CoefficientList[Series[(Sum[x^(k^3), {k, 1, nmax}])^2, {x, 0, nmax}], x]
  • PARI
    A010057(n) = ispower(n, 3);
    A280618(n) = if(n<2, 0, sum(r=1,sqrtnint(n-1,3),A010057(n-(r^3)))); \\ Antti Karttunen, Nov 30 2021

Formula

G.f.: (Sum_{k>=1} x^(k^3))^2.

A340905 Number of ways to write n as an ordered sum of 6 squares of positive integers.

Original entry on oeis.org

1, 0, 0, 6, 0, 0, 15, 0, 6, 20, 0, 30, 15, 0, 60, 12, 15, 60, 31, 60, 30, 60, 90, 36, 86, 60, 120, 120, 15, 180, 141, 60, 165, 140, 180, 186, 120, 180, 285, 156, 126, 360, 255, 216, 270, 260, 390, 240, 262, 420, 426, 360, 210, 540, 530, 216, 540, 540, 480, 600, 300, 600, 825, 312, 576, 840
Offset: 6

Views

Author

Ilya Gutkovskiy, Jan 31 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add((s->
          `if`(s>n, 0, b(n-s, t-1)))(j^2), j=1..isqrt(n))))
        end:
    a:= n-> b(n, 6):
    seq(a(n), n=6..71);  # Alois P. Heinz, Jan 31 2021
  • Mathematica
    nmax = 71; CoefficientList[Series[(EllipticTheta[3, 0, x] - 1)^6/64, {x, 0, nmax}], x] // Drop[#, 6] &

Formula

G.f.: (theta_3(x) - 1)^6 / 64, where theta_3() is the Jacobi theta function.

A340946 Number of ways to write n as an ordered sum of 9 squares of positive integers.

Original entry on oeis.org

1, 0, 0, 9, 0, 0, 36, 0, 9, 84, 0, 72, 126, 0, 252, 135, 36, 504, 156, 252, 630, 288, 756, 576, 606, 1260, 756, 1207, 1260, 1584, 2052, 1008, 2727, 2688, 1764, 3663, 2718, 3816, 4608, 2853, 5418, 6048, 4620, 5868, 7506, 7464, 7308, 8442, 8958, 11088, 10404, 9684, 13986, 14184, 13020
Offset: 9

Views

Author

Ilya Gutkovskiy, Jan 31 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add((s->
          `if`(s>n, 0, b(n-s, t-1)))(j^2), j=1..isqrt(n))))
        end:
    a:= n-> b(n, 9):
    seq(a(n), n=9..63);  # Alois P. Heinz, Jan 31 2021
  • Mathematica
    nmax = 63; CoefficientList[Series[(EllipticTheta[3, 0, x] - 1)^9/512, {x, 0, nmax}], x] // Drop[#, 9] &

Formula

G.f.: (theta_3(x) - 1)^9 / 512, where theta_3() is the Jacobi theta function.

A338223 G.f.: (1 / theta_4(x) - 1)^2 / 4, where theta_4() is the Jacobi theta function.

Original entry on oeis.org

1, 4, 12, 30, 68, 144, 289, 556, 1034, 1868, 3292, 5678, 9608, 15984, 26188, 42314, 67509, 106460, 166090, 256552, 392628, 595696, 896484, 1338894, 1985298, 2923840, 4278448, 6222518, 8997544, 12938368, 18507297, 26340040, 37307326, 52597320, 73825504, 103180702
Offset: 2

Views

Author

Ilya Gutkovskiy, Jan 30 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, 1/2, `if`(i=1, 0,
          g(n, i-1))+add(2*g(n-i*j, i-1), j=`if`(i=1, n, 1)..n/i))
        end:
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
          g(n$2)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 2):
    seq(a(n), n=2..37);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 37; CoefficientList[Series[(1/EllipticTheta[4, 0, x] - 1)^2/4, {x, 0, nmax}], x] // Drop[#, 2] &
    nmax = 37; CoefficientList[Series[(1/4) (-1 + Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}])^2, {x, 0, nmax}], x] // Drop[#, 2] &
    A015128[n_] := Sum[PartitionsP[k] PartitionsQ[n - k], {k, 0, n}]; a[n_] := (1/4) Sum[A015128[k] A015128[n - k], {k, 1, n - 1}]; Table[a[n], {n, 2, 37}]

Formula

G.f.: (1/4) * (-1 + Product_{k>=1} (1 + x^k) / (1 - x^k))^2.
a(n) = Sum_{k=0..n} A014968(k) * A014968(n-k).
a(n) = (1/4) * Sum_{k=1..n-1} A015128(k) * A015128(n-k).
a(n) = (A001934(n) - 2 * A015128(n)) / 4 for n > 0.

A340481 Number of ways to write n as an ordered sum of 5 squares of positive integers.

Original entry on oeis.org

1, 0, 0, 5, 0, 0, 10, 0, 5, 10, 0, 20, 5, 0, 30, 6, 10, 20, 20, 30, 5, 30, 30, 20, 35, 10, 60, 45, 0, 60, 50, 30, 45, 50, 60, 70, 35, 30, 110, 50, 31, 110, 80, 80, 50, 70, 120, 70, 75, 90, 140, 110, 20, 140, 160, 60, 135, 120, 120, 180, 40, 130, 230, 80, 120, 170, 200, 155, 85, 200, 190
Offset: 5

Views

Author

Ilya Gutkovskiy, Jan 31 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add((s->
          `if`(s>n, 0, b(n-s, t-1)))(j^2), j=1..isqrt(n))))
        end:
    a:= n-> b(n, 5):
    seq(a(n), n=5..75);  # Alois P. Heinz, Jan 31 2021
  • Mathematica
    nmax = 75; CoefficientList[Series[(EllipticTheta[3, 0, x] - 1)^5/32, {x, 0, nmax}], x] // Drop[#, 5] &

Formula

G.f.: (theta_3(x) - 1)^5 / 32, where theta_3() is the Jacobi theta function.

A340906 Number of ways to write n as an ordered sum of 7 squares of positive integers.

Original entry on oeis.org

1, 0, 0, 7, 0, 0, 21, 0, 7, 35, 0, 42, 35, 0, 105, 28, 21, 140, 49, 105, 105, 106, 210, 84, 182, 210, 217, 287, 105, 420, 378, 126, 497, 392, 420, 532, 350, 630, 714, 434, 546, 980, 742, 609, 980, 896, 1071, 882, 875, 1470, 1239, 1099, 1155, 1722, 1652, 882, 1933, 1995, 1554, 2072, 1505
Offset: 7

Views

Author

Ilya Gutkovskiy, Jan 31 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add((s->
          `if`(s>n, 0, b(n-s, t-1)))(j^2), j=1..isqrt(n))))
        end:
    a:= n-> b(n, 7):
    seq(a(n), n=7..67);  # Alois P. Heinz, Jan 31 2021
  • Mathematica
    nmax = 67; CoefficientList[Series[(EllipticTheta[3, 0, x] - 1)^7/128, {x, 0, nmax}], x] // Drop[#, 7] &

Formula

G.f.: (theta_3(x) - 1)^7 / 128, where theta_3() is the Jacobi theta function.

A340915 Number of ways to write n as an ordered sum of 8 squares of positive integers.

Original entry on oeis.org

1, 0, 0, 8, 0, 0, 28, 0, 8, 56, 0, 56, 70, 0, 168, 64, 28, 280, 84, 168, 280, 176, 420, 224, 345, 560, 392, 616, 420, 848, 924, 336, 1246, 1064, 868, 1464, 988, 1680, 1820, 1120, 1904, 2464, 1932, 1904, 2870, 2752, 2772, 2912, 2892, 4256, 3640, 3248, 4480, 5040, 4760, 3696, 6120
Offset: 8

Views

Author

Ilya Gutkovskiy, Jan 31 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add((s->
          `if`(s>n, 0, b(n-s, t-1)))(j^2), j=1..isqrt(n))))
        end:
    a:= n-> b(n, 8):
    seq(a(n), n=8..64);  # Alois P. Heinz, Jan 31 2021
  • Mathematica
    nmax = 64; CoefficientList[Series[(EllipticTheta[3, 0, x] - 1)^8/256, {x, 0, nmax}], x] // Drop[#, 8] &

Formula

G.f.: (theta_3(x) - 1)^8 / 256, where theta_3() is the Jacobi theta function.

A340947 Number of ways to write n as an ordered sum of 10 squares of positive integers.

Original entry on oeis.org

1, 0, 0, 10, 0, 0, 45, 0, 10, 120, 0, 90, 210, 0, 360, 262, 45, 840, 300, 360, 1260, 480, 1260, 1350, 1015, 2520, 1560, 2200, 3150, 2880, 4186, 2880, 5430, 6240, 3780, 8300, 7080, 7920, 11160, 7320, 13257, 14640, 10600, 16470, 18570, 18240, 19620, 22230, 25135, 27720, 28020, 28480, 38160
Offset: 10

Views

Author

Ilya Gutkovskiy, Jan 31 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add((s->
          `if`(s>n, 0, b(n-s, t-1)))(j^2), j=1..isqrt(n))))
        end:
    a:= n-> b(n, 10):
    seq(a(n), n=10..62);  # Alois P. Heinz, Jan 31 2021
  • Mathematica
    nmax = 62; CoefficientList[Series[(EllipticTheta[3, 0, x] - 1)^10/1024, {x, 0, nmax}], x] // Drop[#, 10] &

Formula

G.f.: (theta_3(x) - 1)^10 / 1024, where theta_3() is the Jacobi theta function.

A081324 Twice a square but not the sum of 2 distinct squares.

Original entry on oeis.org

0, 2, 8, 18, 32, 72, 98, 128, 162, 242, 288, 392, 512, 648, 722, 882, 968, 1058, 1152, 1458, 1568, 1922, 2048, 2178, 2592, 2888, 3528, 3698, 3872, 4232, 4418, 4608, 4802, 5832, 6272, 6498, 6962, 7688, 7938, 8192, 8712, 8978, 9522, 10082, 10368, 11552
Offset: 1

Views

Author

Benoit Cloitre, Apr 20 2003

Keywords

Comments

Conjecture: for n>1 this is A050804.
From Altug Alkan, Apr 12 2016: (Start)
Conjecture is true. Proof :
If n = a^2 + b^2, where a and b are nonzero integers, then n^3 = (a^2 + b^2)^3 = A^2 + B^2 = C^2 + D^2 where;
A = 2*a^2*b + (a^2-b^2)*b = 3*a^2*b - b^3,
B = 2*a*b^2 - (a^2-b^2)*a = 3*a*b^2 - a^3,
C = 2*a*b^2 + (a^2-b^2)*a = 1*a*b^2 + a^3,
D = 2*a^2*b - (a^2-b^2)*b = 1*a^2*b + b^3.
Obviously, A, B, C, D are always nonzero because a and b are nonzero integers. Additionally, if a^2 is not equal to b^2, then (A, B) and (C, D) are distinct pairs, that is, n^3 can be expressible as a sum of two nonzero squares more than one way. Since we know that n is a sum of two nonzero squares if and only if n^3 is a sum of two nonzero squares (see comment section of A000404); if n^3 is the sum of two nonzero squares in exactly one way, n must be a^2 + b^2 with a^2 = b^2 and n is the sum of two nonzero squares in exactly one way. That is the definition of this sequence, so this sequence is exactly A050804 except "0" that is the first term of this sequence. (End) [Edited by Altug Alkan, May 14 2016]
Conjecture: sequence consists of numbers of form 2*k^2 such that sigma(2*k^2)==3 (mod 4) and k is not divisible by 5.
The reason of related observation is that 5 is the least prime of the form 4*m+1. However, counterexamples can be produced. For example 57122 = 2*169^2 and sigma(57122) == 3 (mod 4) and it is not divisible by 5. - Altug Alkan, Jun 10 2016
For n > 0, this sequence lists numbers n such that n is the sum of two nonzero squares while n^2 is not. - Altug Alkan, Apr 11 2016
2*k^2 where k has no prime factor == 1 (mod 4). - Robert Israel, Jun 10 2016

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a081324 n = a081324_list !! (n-1)
    a081324_list = 0 : elemIndices 1 a063725_list
    -- Reinhard Zumkeller, Aug 17 2011
    
  • Maple
    map(k -> 2*k^2, select(k -> andmap(t -> t[1] mod 4 <> 1, ifactors(k)[2]), [$0..100])); # Robert Israel, Jun 10 2016
  • Mathematica
    Select[ Range[0, 12000], MatchQ[ PowersRepresentations[#, 2, 2], {{n_, n_}}] &] (* Jean-François Alcover, Jun 18 2013 *)
  • PARI
    concat([0,2],apply(n->2*n^2, select(n->vecmin(factor(n)[, 1]%4)>1, vector(100,n,n+1)))) \\ Charles R Greathouse IV, Jun 18 2013

Formula

A063725(a(n)) = 1. [Reinhard Zumkeller, Aug 17 2011]
a(n) = 2*A004144(n-1)^2 for n > 1. - Charles R Greathouse IV, Jun 18 2013

Extensions

a(19)-a(45) from Donovan Johnson, Nov 15 2009
Offset corrected by Reinhard Zumkeller, Aug 17 2011

A328151 a(n) is the smallest nonnegative integer k where exactly n ordered pairs of positive integers (x, y) exist such that x^2 + y^2 = k.

Original entry on oeis.org

0, 2, 5, 50, 65, 1250, 325, 31250, 1105, 8450, 8125, 19531250, 5525, 488281250, 105625, 211250, 27625, 305175781250, 71825, 7629394531250, 138125, 5281250, 126953125, 4768371582031250, 160225, 35701250, 1221025, 2442050, 3453125
Offset: 0

Views

Author

Felix Fröhlich, Oct 05 2019

Keywords

Comments

a(n) is the smallest nonnegative i such that A063725(i) = n.
If a(n) exists, then a(n) is of the form 2*m^2 if and only if n is odd. - Chai Wah Wu, Jun 28 2024

Examples

			For n = 3: The sums of the two members of each of the pairs (1, 49), (25, 25) and (49, 1) is 50 and 50 is the smallest nonnegative integer where exactly 3 such pairs exist, so a(3) = 50.
		

Crossrefs

Programs

  • PARI
    a063725(n) = if(n==0, return(0)); my(f=factor(n)); prod(i=1, #f~, if(f[i, 1]%4==1, f[i, 2]+1, f[i, 2]%2==0 || f[i, 1]==2)) - issquare(n) \\ after Charles R Greathouse IV in A063725
    a(n) = for(x=0, oo, if(a063725(x)==n, return(x)))
    
  • Python
    # uses Python code from A063725
    from itertools import count
    def A328151(n): return next(m for m in ((k**2<<1) if n&1 else k for k in count(0)) if A063725(m)==n) # Chai Wah Wu, Jun 28 2024

Formula

Conjecture: a(2k) = A093195(k) for k >= 1, a(2k+1) = 2*A006339(k)^2 for k >= 0. - Jon E. Schoenfield, Jan 23 2022

Extensions

a(13)-a(22) from Bert Dobbelaere, Oct 20 2019
a(23)-a(28) from Chai Wah Wu, Jun 28 2024
Previous Showing 11-20 of 33 results. Next