cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A241817 Semiprimes sp such that sp-3 is prime.

Original entry on oeis.org

6, 10, 14, 22, 26, 34, 46, 62, 74, 82, 86, 106, 134, 142, 166, 194, 202, 214, 226, 254, 274, 314, 334, 362, 382, 386, 422, 446, 466, 482, 502, 526, 566, 622, 634, 662, 694, 746, 842, 862, 866, 886, 914, 922, 974, 1042, 1094, 1126, 1154, 1174, 1226, 1234, 1262
Offset: 1

Views

Author

K. D. Bajpai, Apr 29 2014

Keywords

Comments

Even numbers of the form 2p, p prime, that can be expressed as the sum of two primes in at least two ways as 2p = p + p = 3 + (2p-3). For example, 34 is in the sequence because 34 = 2*17 = 17 + 17 = 3 + 31. These are the only numbers that have Goldbach partitions with both a minimum and a maximum possible difference between their prime parts, i.e., |p-p| = 0 and |(2p-3)-3| = 2p-6 respectively. - Wesley Ivan Hurt, Apr 08 2018

Examples

			a(2) = 10 = 2*5, which is semiprime and 10-3 = 7 is a prime.
a(6) = 34 = 2*17, which is semiprime and 34-3 = 31 is a prime.
		

Crossrefs

Programs

  • Maple
    with(numtheory): A241817:= proc(); if bigomega(x)=2 and isprime(x-3) then  RETURN (x); fi; end: seq(A241817 (), x=1..3000);
  • Mathematica
    2 Select [Prime[Range[5!]], PrimeQ[2 # - 3] &] (* Vincenzo Librandi, Apr 10 2018 *)
    Select[Range[1500],PrimeOmega[#]==2&&PrimeQ[#-3]&] (* Harvey P. Dale, Oct 14 2018 *)

Formula

a(n) = 2 * A063908(n). - Wesley Ivan Hurt, Apr 08 2018

A243630 Primes p such that 2*p^3 - 3 is also prime.

Original entry on oeis.org

2, 7, 11, 13, 47, 101, 107, 151, 163, 167, 251, 257, 401, 443, 467, 521, 571, 641, 653, 673, 797, 907, 911, 971, 983, 997, 1013, 1151, 1153, 1181, 1187, 1223, 1231, 1277, 1291, 1303, 1361, 1433, 1481, 1511, 1597, 1637, 1723, 1741, 1811, 1951, 2027, 2081, 2083, 2141, 2287, 2311
Offset: 1

Views

Author

Vincenzo Librandi, Jun 08 2014

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2500) | IsPrime(2*p^3 - 3)];
  • Mathematica
    Select[Prime[Range[2500]], PrimeQ[2 #^3 - 3] &]

A290838 a(n) = smallest prime p such that 2p - 2n + 1 is prime.

Original entry on oeis.org

2, 2, 3, 5, 5, 7, 7, 13, 11, 11, 11, 13, 13, 19, 17, 17, 17, 19, 19, 37, 23, 23, 23, 29, 29, 31, 29, 29, 29, 31, 31, 37, 37, 41, 37, 37, 37, 43, 41, 41, 41, 43, 43, 61, 47, 47, 47, 53, 53, 67, 53, 53, 53, 59, 59, 61, 59, 59, 59, 61, 61, 67, 67, 71, 67, 67, 67, 73
Offset: 0

Views

Author

XU Pingya, Aug 11 2017

Keywords

Comments

a(n) > n. - Iain Fox, Nov 13 2017

Crossrefs

Programs

  • Mathematica
    Table[j=0; found=False; While[!found,j++; found=PrimeQ[2Prime[j]-2n+1] && 2Prime[j]-2n+1>0]; Prime[j],{n,67}]
    (* Second program: *)
    Table[SelectFirst[Prime@ Range[n^2], And[# > 0, PrimeQ@ #] &[2 # - 2 n + 1] &], {n, 67}] (* Michael De Vlieger, Aug 14 2017 *)
  • PARI
    a(n) = {my(p=2); while(!isprime(2*p-2*n+1), p = nextprime(p+1)); p; } \\ Michel Marcus, Aug 12 2017
    
  • PARI
    a(n) = forprime(p=n+1, , if(isprime(2*p - 2*n + 1), return(p))) \\ Iain Fox, Nov 13 2017

Formula

a(-n) = A290839(n+1) - Iain Fox, Dec 14 2017

Extensions

a(0) prepended by Iain Fox, Dec 14 2017

A308643 Odd squarefree composite numbers k, divisible by the sum of their prime factors, sopfr (A001414).

Original entry on oeis.org

105, 231, 627, 805, 897, 1581, 2967, 3055, 4543, 5487, 6461, 6745, 7881, 9717, 10707, 14231, 15015, 16377, 21091, 26331, 29607, 33495, 33901, 33915, 35905, 37411, 38843, 40587, 42211, 45885, 49335, 50505, 51051, 53295, 55581, 60297
Offset: 1

Views

Author

David James Sycamore, Jun 13 2019

Keywords

Comments

Every term has an odd number of prime divisors (A001221(k) is odd), since if not, sopfr(k) would be even, and so not divide k, which is odd.
Some Carmichael numbers appear in this sequence, the first of which is 3240392401.
From Robert Israel, Jul 05 2019: (Start)
Includes p*q*r if p and q are distinct odd primes and r=(p-1)*(q-1)-1 is prime. Dickson's conjecture implies that there are infinitely many such terms for each odd prime p. Thus for p=3, q is in A063908 (except 3), for p=5, q is in A156300 (except 2), and for p=7, q is in A153135 (except 2). (End)

Examples

			105=3*5*7; sum of prime factors = 15 and 105 = 7*15, so 105 is a term.
		

Crossrefs

Programs

  • Magma
    [k:k in [2*d+1: d in [1..35000]]|IsSquarefree(k) and not IsPrime(k) and k mod &+PrimeDivisors(k) eq 0]; // Marius A. Burtea, Jun 19 2019
  • Maple
    with(NumberTheory);
    N := 500;
    for n from 2 to N do
    S := PrimeFactors(n);
    X := add(S);
    if IsSquareFree(n) and not mod(n, 2) = 0 and not isprime(n) and mod(n, X) = 0 then print(n);
    end if:
    end do:
  • Mathematica
    aQ[n_] := Module[{f = FactorInteger[n]}, p=f[[;;,1]]; e=f[[;;,2]]; Length[e] > 1 && Max[e]==1 && Divisible[n, Plus@@(p^e)]]; Select[Range[1, 61000, 2], aQ] (* Amiram Eldar, Jul 04 2019 *)

A145481 Primes p such that 2*p - 17 is prime.

Original entry on oeis.org

11, 17, 23, 29, 53, 59, 83, 107, 137, 149, 167, 233, 239, 263, 269, 293, 317, 347, 359, 389, 419, 449, 479, 557, 563, 599, 617, 647, 653, 659, 809, 827, 857, 863, 947, 953, 983, 1049, 1163, 1187, 1217, 1229, 1283, 1319, 1373, 1409, 1427, 1439, 1487, 1493
Offset: 1

Views

Author

Artur Jasinski, Oct 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; k = 17; Do[If[PrimeQ[(k + Prime[n])/2], AppendTo[aa, (k + Prime[n])/2]], {n, 1, 500}];aa
    (* Second program: *)
    Select[Prime@ Range@ 250, And[PrimeQ@ #, # > 0] &[2 # - 17] &] (* Michael De Vlieger, Jan 23 2017 *)

Formula

a(n) = 2*A145475(n) - 17.

A145482 Primes p such that 2*p - 19 is prime.

Original entry on oeis.org

11, 13, 19, 31, 43, 61, 73, 79, 109, 151, 163, 193, 199, 229, 241, 271, 283, 313, 331, 373, 379, 421, 439, 463, 541, 571, 661, 673, 709, 733, 739, 751, 823, 859, 883, 1009, 1051, 1129, 1153, 1201, 1279, 1453, 1543, 1549, 1663, 1669, 1741, 1759, 1783, 1789
Offset: 1

Views

Author

Artur Jasinski, Oct 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; k = 19; Do[If[PrimeQ[(k + Prime[n])/2], AppendTo[aa, (k + Prime[n])/2]], {n, 1, 500}];aa
    (* Second program: *)
    Select[Prime@ Range@ 300, And[PrimeQ@ #, # > 0] &[2 # - 19] &] (* Michael De Vlieger, Jan 23 2017 *)

Formula

a(n) = 2*A145476(n) - 19.

A145483 Primes p such that 2*p - 23 is prime.

Original entry on oeis.org

13, 17, 23, 41, 47, 53, 101, 107, 131, 137, 167, 191, 227, 233, 251, 257, 263, 293, 311, 353, 383, 431, 443, 467, 503, 521, 557, 563, 587, 593, 641, 653, 761, 773, 797, 821, 947, 977, 1013, 1031, 1061, 1181, 1187, 1217, 1223, 1277, 1283, 1301, 1307, 1361
Offset: 1

Views

Author

Artur Jasinski, Oct 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; k = 23; Do[If[PrimeQ[(k + Prime[n])/2], AppendTo[aa, (k + Prime[n])/2]], {n, 1, 500}];aa
    (* Second program: *)
    Select[Prime@ Range@ 240, And[PrimeQ@ #, # > 0] &[2 # - 23] &] (* Michael De Vlieger, Jan 23 2017 *)

Formula

a(n) = 2*A145477(n) - 23.

A145484 Primes p such that 2*p - 29 is a positive prime.

Original entry on oeis.org

17, 23, 29, 41, 59, 71, 83, 89, 101, 113, 131, 149, 173, 191, 239, 269, 293, 311, 353, 401, 419, 443, 479, 491, 503, 521, 563, 569, 653, 659, 701, 719, 761, 821, 863, 881, 953, 971, 1013, 1049, 1091, 1151, 1163, 1181, 1193, 1223, 1289, 1319, 1361, 1409
Offset: 1

Views

Author

Artur Jasinski, Oct 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; k = 29; Do[If[PrimeQ[(k + Prime[n])/2], AppendTo[aa, (k + Prime[n])/2]], {n, 1, 500}];aa (* Artur Jasinski *)
    Select[Prime[Range[7,300]],PrimeQ[2#-29]&] (* Harvey P. Dale, Dec 14 2010 *)

Formula

a(n) = 2*A145478(n) - 29.

A145485 Primes p such that 2*p - 31 is prime.

Original entry on oeis.org

17, 19, 31, 37, 67, 79, 97, 127, 151, 157, 181, 199, 277, 331, 337, 379, 409, 421, 457, 499, 541, 547, 577, 601, 631, 661, 727, 739, 751, 757, 787, 829, 877, 907, 991, 1009, 1021, 1087, 1117, 1171, 1201, 1249, 1291, 1381, 1399, 1459, 1549, 1597, 1609, 1669
Offset: 1

Views

Author

Artur Jasinski, Oct 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; k = 31; Do[If[PrimeQ[(k + Prime[n])/2], AppendTo[aa, (k + Prime[n])/2]], {n, 1, 500}];aa
  • PARI
    list(lim)=my(v=List()); forprime(p=2,lim, if(isprime(2*p-31), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Jan 23 2017

Formula

a(n) = 2*A145479(n) - 31.

A145486 Primes p such that 2*p - 37 is prime.

Original entry on oeis.org

37, 67, 73, 97, 109, 139, 157, 193, 223, 229, 307, 349, 373, 397, 433, 457, 487, 523, 577, 619, 643, 709, 733, 823, 829, 853, 907, 919, 1033, 1063, 1087, 1129, 1153, 1213, 1237, 1279, 1297, 1327, 1447, 1543, 1549, 1579, 1609, 1627, 1669, 1699, 1747, 1753
Offset: 1

Views

Author

Artur Jasinski, Oct 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    aa = {}; k = 37; Do[If[PrimeQ[(k + Prime[n])/2], AppendTo[aa, (k + Prime[n])/2]], {n, 1, 500}];aa
  • PARI
    list(lim)=my(v=List()); forprime(p=2,lim, if(isprime(2*p-37), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Jan 23 2017

Formula

a(n)=2*A145480(n)-37
Previous Showing 11-20 of 28 results. Next