cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A127652 Integers whose unitary aliquot sequences are longer than their ordinary aliquot sequences.

Original entry on oeis.org

25, 28, 36, 40, 50, 68, 70, 74, 94, 95, 98, 116, 119, 134, 142, 143, 154, 162, 170, 175, 182, 189, 190, 200, 220, 226, 242, 245, 262, 273
Offset: 1

Views

Author

Ant King, Jan 24 2007

Keywords

Comments

Here the length of an aliquot sequence is defined to be the length of the transient part of its trajectory + the length of its terminal cycle.

Examples

			a(5)=50 because the fifth integer whose unitary aliquot sequence is longer than its ordinary aliquot sequence is 50.
		

References

  • Riele, H. J. J. te; Unitary Aliquot Sequences. MR 139/72, Mathematisch Centrum, 1972, Amsterdam.
  • Riele, H. J. J. te; Further Results On Unitary Aliquot Sequences. NW 2/73, Mathematisch Centrum, 1973, Amsterdam.

Crossrefs

Programs

  • Mathematica
    UnitaryDivisors[n_Integer?Positive]:=Select[Divisors[n],GCD[ #,n/# ]==1&];sstar[n_]:=Plus@@UnitaryDivisors[n]-n;g[n_] := If[n > 0, sstar[n], 0];UnitaryTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];s[n_]:=DivisorSigma[1,n]-n;h[n_] := If[n > 0, s[n], 0];OrdinaryTrajectory[n_] := Most[NestWhileList[h, n, UnsameQ, All]];Select[Range[275],Length[UnitaryTrajectory[ # ]]>Length[OrdinaryTrajectory[ # ]] &]

Formula

Sequence gives those values of n for which A097032(n)>A098007(n).

A319917 Unitary sociable numbers of order six.

Original entry on oeis.org

698130, 698310, 698490, 712710, 712890, 713070, 341354790, 348612390, 391662810, 406468314, 411838938, 519891750, 530946330, 582129630, 596171970, 621549630, 717175170, 740700270, 740700450, 743324934, 838902150, 919121658, 1009954170, 1343332998
Offset: 1

Views

Author

Michel Marcus, Oct 01 2018

Keywords

Comments

Note that the first 6 terms and the next 6 terms form two sociable groups. But then the next 12 terms belong to two distinct sociable groups.

Crossrefs

Cf. A063919 (sum of proper unitary divisors).
Cf. A002827 (unitary perfect), A063991 (unitary amicable).
Cf. A319902 (order 4), A097024 (order 5), A097030 (order 14).

Programs

  • PARI
    f(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d)) - n;
    isok6(n) = iferr(f(f(f(f(f(f(n)))))) == n, E, 0);
    isok3(n) = iferr(f(f(f(n))) == n, E, 0);
    isok2(n) = iferr(f(f(n)) == n, E, 0);
    isok1(n) = iferr(f(n) == n, E, 0);
    isok(n) = isok6(n) && !isok1(n) && !isok2(n) && !isok3(n);
    
  • PARI
    A063919(n) = my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^f[i, 2] + 1) - n
    is(n) = my(c = n); for(i = 1, 5, c = A063919(c); if(c == 1 || c == n, return(0))); c = A063919(c); c == n \\ David A. Corneth, Oct 01 2018

A327159 Size of the cycle containing n in the map x -> usigma(x)-x or 0 if n is not a member of any finite cycle. Here usigma is the sum of unitary divisors of n (A034448).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Aug 28 2019

Keywords

Examples

			Because A034460(6) = 6, a(6) = 1.
Because A034460(30) = 42, A034460(42) = 54, A034460(54) = 30, a(30) = a(42) = a(54) = 3.
Because A034460(90) = 90, a(90) = 1. Because A034460(78) = 90, a(78) = 0, as even though 78 ends into a cycle of one, it itself is not a part of that cycle.
		

Crossrefs

Cf. A002827 (positions of ones), A063991 (of 2's), A319902 (of 4's), A097024 (of 5's), A319917 (of 6's), A319937 (of 10's), A097030 (of 14's), A327157 (of all nonzero terms).

Programs

  • Mathematica
    a034460[0] = 0; (* avoids dividing by 0 when an iteration reaches 0 *)
    a034460[n_] := Total[Select[Divisors[n], GCD[#, n/#] == 1 &]] - n /; n > 0
    cycleL[k_] := Module[{nL=NestWhileList[a034460, k, UnsameQ, All]}, If[k==Last[nL], Length[nL]-1, 0]]
    a327159[n_] := Map[cycleL, Range[n]]
    a327159[120] (* Hartmut F. W. Hoft, Feb 04 2024 *)
  • PARI
    A034460(n) = (sumdivmult(n, d, if(gcd(d, n/d)==1, d))-n); \\ From A034460
    A327159(n,orgn=n,xs=Set([])) = if(1==n,0,if(vecsearch(xs,n), if(n==orgn,length(xs),0), xs = setunion([n],xs); A327159(A034460(n),orgn,xs)));

A098186 If f[x]=(sum of unitary-proper divisors of x)=A063919[x] is iterated, the iteration may lead to a fixed point which is either 0 or belongs to A002827, a unitary-perfect-number >1: 6,60,90,87360... Sequence gives initial values for which the iteration ends in 87360, the 4th unitary perfect number.

Original entry on oeis.org

87360, 232608, 356640, 465144, 527712, 565728, 713208, 1018248, 1055352, 1211352, 1240032, 1303728, 1316904, 1352568, 1357584, 1360416, 1379280, 1550472, 1690440, 1835592, 2035608, 2078328, 2110632, 2262892, 2422632
Offset: 1

Views

Author

Labos Elemer, Aug 31 2004

Keywords

Examples

			Iteration list started from n=1018248: {1018248, 1055352, 527712, 232608, 87360, 87360...}
		

Crossrefs

Programs

  • Mathematica
    di[x_] :=Divisors[x];ta={{0}}; ud[x_] :=Part[di[x], Flatten[Position[GCD[di[x], Reverse[di[x]]], 1]]]; asu[x_] :=Apply[Plus, ud[x]]-x; nsf[x_, ho_] :=NestList[asu, x, ho] Do[g=n;s=Last[NestList[asu, n, 100]];If[Equal[s, 87360], Print[{n, s}]; ta=Append[ta, n]], {n, 1, 5000000}];ta = Delete[ta, 1]

A319937 Unitary sociable numbers of order 10.

Original entry on oeis.org

525150234, 527787366, 528544218, 553128198, 612951066, 675192294, 735821562, 982674438, 998151162, 998151174, 5251502340, 5277873660, 5285442180, 5531281980, 6129510660, 6751922940, 7358215620, 9826744380, 9981511620, 9981511740
Offset: 1

Views

Author

Michel Marcus, Oct 02 2018

Keywords

Crossrefs

Cf. A063919 (sum of proper unitary divisors).
Cf. A002827 (unitary perfect), A063991 (unitary amicable).
Cf. A097024 (order 5), A319917 (order 6), A097030 (order 14).

Programs

  • PARI
    f(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d)) - n;
    isok10(n) = iferr(f(f(f(f(f(f(f(f(f(f(n)))))))))) == n, E, 0);
    isok5(n) = iferr(f(f(f(f(f(n))))) == n, E, 0);
    isok2(n) = iferr(f(f(n)) == n, E, 0);
    isok1(n) = iferr(f(n) == n, E, 0);
    isok(n) = isok10(n) && !isok1(n) && !isok2(n) && !isok5(n);

A292019 List of pairs of unitary amicable numbers (m, n) with record value of m/n.

Original entry on oeis.org

114, 126, 44772, 49308, 241110, 242730, 10254970, 10273670, 766292835, 766512285, 17454440640, 17454615360
Offset: 1

Views

Author

Amiram Eldar, Sep 07 2017

Keywords

Comments

The 2 members in each pair are adjacent to each other in the sequence.
The unitary version of A287026.

Examples

			The ratios m/n are
114/126 = 0.90476...
44772/49308 = 0.90800...
241110/242730 = 0.99332...
10254970/10273670 = 0.99818...
766292835/766512285 = 0.99971...
17454440640/17454615360 = 0.99999...
		

Crossrefs

A292020 List of pairs of unitary amicable numbers (m, n) with record low values of m/n.

Original entry on oeis.org

114, 126, 18018, 22302, 32130, 40446, 197340, 286500, 703972667580, 1057831128900
Offset: 1

Views

Author

Amiram Eldar, Sep 07 2017

Keywords

Comments

The 2 members in each pair are adjacent to each other in the sequence.
The unitary version of A287011.

Examples

			The ratios m/n are
114/126 = 0.904...
18018/22302 = 0.807...
32130/40446 = 0.794...
197340/286500 = 0.688...
703972667580/1057831128900 = 0.665...
		

Crossrefs

Previous Showing 21-27 of 27 results.