cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 118 results. Next

A243505 Permutation of natural numbers, take the odd bisection of A122111 and divide the largest prime factor out: a(n) = A052126(A122111(2n-1)).

Original entry on oeis.org

1, 2, 4, 8, 3, 16, 32, 6, 64, 128, 12, 256, 9, 5, 512, 1024, 24, 18, 2048, 48, 4096, 8192, 10, 16384, 27, 96, 32768, 36, 192, 65536, 131072, 20, 72, 262144, 384, 524288, 1048576, 15, 54, 2097152, 7, 4194304, 144, 768, 8388608, 108, 1536, 288, 16777216, 40, 33554432, 67108864, 30
Offset: 1

Views

Author

Antti Karttunen, Jun 25 2014

Keywords

Crossrefs

Programs

Formula

a(n) = A052126(A122111((2*n)-1)).
a(n) = A122111((2*n)-1) / A105560((2*n)-1).
As a composition of related permutations:
a(n) = A122111(A064216(n)).
a(n) = A241916(A243065(n)).
Other identities:
For all n >= 2, a(n) = A070003(A244984(n)-1) / A105560((2*n)-1).
For all n >= 1, a(A006254(n)) = A000079(n) and a(A007051(n)) = A000040(n).
For all n >= 1, A105560(2n-1) divides a(n).

A104275 Numbers k such that 2k-1 is not prime.

Original entry on oeis.org

1, 5, 8, 11, 13, 14, 17, 18, 20, 23, 25, 26, 28, 29, 32, 33, 35, 38, 39, 41, 43, 44, 46, 47, 48, 50, 53, 56, 58, 59, 60, 61, 62, 63, 65, 67, 68, 71, 72, 73, 74, 77, 78, 80, 81, 83, 85, 86, 88, 89, 92, 93, 94, 95, 98, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 113
Offset: 1

Views

Author

Alexandre Wajnberg, Apr 17 2005

Keywords

Comments

Same as A053726 except for the first term of this sequence.
Numbers k such that A064216(k) is not prime. - Antti Karttunen, Apr 17 2015
Union of 1 and terms of the form (u+1)*(v+1) + u*v with 1 <= u <= v. - Ralf Steiner, Nov 17 2021

Examples

			a(1) = 1 because 2*1-1=1, not prime.
a(2) = 5 because 2*5-1=9, not prime (2, 3 and 4 give 3, 5 and 7 which are primes).
From _Vincenzo Librandi_, Jan 15 2013: (Start)
As a triangular array (apart from term 1):
   5;
   8,  13;
  11,  18,  25;
  14,  23,  32,  41;
  17,  28,  39,  50,  61;
  20,  33,  46,  59,  72,  85;
  23,  38,  53,  68,  83,  98, 113;
  26,  43,  60,  77,  94, 111, 128, 145;
  29,  48,  67,  86, 105, 124, 143, 162, 181;
  32,  53,  74,  95, 116, 137, 158, 179, 200, 221; etc.
which is obtained by (2*h*k + k + h + 1) with h >= k >= 1. (End)
The above array, which contains the same terms as A053726 but in different order and with some duplicates, has its own entry A144650. - _Antti Karttunen_, Apr 17 2015
		

Crossrefs

Cf. A006254 (complement), A246371 (a subsequence).

Programs

  • Magma
    [n: n in [1..220]| not IsPrime(2*n-1)]; // Vincenzo Librandi, Jan 28 2011
    
  • Maple
    remove(t -> isprime(2*t-1), [$1..1000]); # Robert Israel, Apr 17 2015
  • Mathematica
    Select[Range[115], !PrimeQ[2#-1] &] (* Robert G. Wilson v, Apr 18 2005 *)
  • PARI
    select( {is_A104275(n)=!isprime(n*2-1)}, [1..115]) \\ M. F. Hasler, Aug 02 2022
    
  • Python
    from sympy import isprime
    def ok(n): return not isprime(2*n-1)
    print(list(filter(ok, range(1, 114)))) # Michael S. Branicky, May 08 2021
    
  • Python
    from sympy import primepi
    def A104275(n):
        if n <= 2: return ((n-1)<<2)+1
        m, k = n-1, (r:=primepi(n-1)) + n - 1 + (n-1>>1)
        while m != k:
            m, k = k, (r:=primepi(k)) + n - 1 + (k>>1)
        return r+n-1 # Chai Wah Wu, Aug 02 2024
    
  • SageMath
    [n for n in (1..250) if not is_prime(2*n-1)] # G. C. Greubel, Oct 17 2023
  • Scheme
    (define (A104275 n) (if (= 1 n) 1 (A053726 (- n 1)))) ;; More code in A053726. - Antti Karttunen, Apr 17 2015
    

Formula

a(n) = A047845(n-1) + 1.
For n > 1, a(n) = A053726(n-1) = n + A008508(n-1). - Antti Karttunen, Apr 17 2015
a(n) = (A014076(n)+1)/2. - Robert Israel, Apr 17 2015

Extensions

More terms from Robert G. Wilson v, Apr 18 2005

A245605 Permutation of natural numbers: a(1) = 1, a(2n) = 2 * a(A064989(2n-1)), a(2n-1) = 1 + (2 * a(A064989(2n-1)-1)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 10, 7, 8, 13, 18, 17, 26, 11, 12, 37, 34, 25, 74, 15, 16, 69, 50, 21, 14, 19, 20, 33, 138, 41, 66, 35, 52, 53, 22, 277, 82, 31, 32, 45, 554, 65, 90, 27, 36, 1109, 130, 101, 42, 43, 28, 73, 2218, 149, 30, 71, 104, 57, 146, 209, 114, 51, 148, 133, 70, 293, 418, 555, 164, 141, 586, 329, 282, 75, 68, 105, 106, 1173, 658, 23, 24
Offset: 1

Views

Author

Antti Karttunen, Jul 29 2014

Keywords

Comments

The even bisection halved gives A245607. The odd bisection incremented by one and halved gives A245707.

Crossrefs

Programs

  • PARI
    A064989(n) = my(f = factor(n)); for(i=1, #f~, if((2 == f[i,1]),f[i,1] = 1,f[i,1] = precprime(f[i,1]-1))); factorback(f);
    A245605(n) = if(1==n, 1, if(0==(n%2), 2*A245605(A064989(n-1)), 1+(2*A245605(A064989(n)-1))));
    for(n=1, 10001, write("b245605.txt", n, " ", A245605(n)));
    
  • Scheme
    ;; With memoization-macro definec.
    (definec (A245605 n) (cond ((= 1 n) 1) ((even? n) (* 2 (A245605 (A064989 (- n 1))))) (else (+ 1 (* 2 (A245605 (-1+ (A064989 n))))))))

Formula

a(1) = 1, a(2n) = 2 * a(A064989(2n-1)), a(2n-1) = 1 + (2 * a(A064989(2n-1)-1)).
a(1) = 1, a(2n) = 2 * a(A064216(n)), a(2n-1) = 1 + (2 * a(A064216(n)-1)).
As a composition of related permutations:
a(n) = A245607(A048673(n)).

A245606 Permutation of natural numbers: a(1) = 1, a(2n) = 1 + A003961(a(n)), a(2n+1) = A003961(1+a(n)). [Where A003961(n) shifts the prime factorization of n one step left].

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 10, 7, 8, 15, 16, 11, 26, 21, 22, 13, 12, 27, 28, 25, 36, 81, 82, 19, 14, 45, 52, 125, 56, 39, 40, 29, 18, 33, 46, 17, 126, 99, 100, 31, 50, 51, 226, 41, 626, 129, 130, 89, 24, 63, 34, 35, 176, 87, 154, 59, 344, 825, 298, 115, 86, 189, 190, 43, 32, 105, 76, 23, 66, 57, 88, 53, 20
Offset: 1

Views

Author

Antti Karttunen, Jul 29 2014

Keywords

Comments

The even bisection halved gives A245608. The odd bisection incremented by one and halved gives A245708.

Crossrefs

Programs

Formula

a(1) = 1, a(2n) = A243501(a(n)), a(2n+1) = A003961(1+a(n)).
As a composition of related permutations:
a(n) = A064216(A245608(n)).

A246371 Numbers n such that, if 2n-1 = Product_{k >= 1} (p_k)^(c_k) then n > Product_{k >= 1} (p_{k-1})^(c_k), where p_k indicates the k-th prime, A000040(k).

Original entry on oeis.org

5, 8, 11, 13, 14, 17, 18, 23, 28, 32, 38, 39, 41, 43, 50, 53, 58, 59, 61, 63, 68, 73, 74, 77, 83, 86, 88, 94, 95, 98, 104, 113, 116, 122, 123, 128, 131, 137, 138, 140, 143, 149, 158, 163, 167, 172, 173, 176, 179, 182, 185, 188, 193, 194, 200, 203, 212, 213, 215, 218, 221, 228, 230, 233, 238, 239, 242, 248, 254, 257
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2014

Keywords

Comments

Numbers n such that A064216(n) < n.
Numbers n such that A064989(2n-1) < n.
Note: This sequence has remarkable but possibly merely coincidental overlap with A053726. On Dec 22 2014, Matthijs Coster mistakenly attached a comment intended for that sequence to this one. On Apr 17 2015, Antti Karttunen noted the error. I have moved the comment to the correct sequence, and have removed Karttunen's note. - Allan C. Wechsler, Aug 01 2022

Crossrefs

Complement: A246372.
Setwise difference of A246361 and A048674.
Subsequence of A104275 and A053726 (20 is the first term > 1 which is not in this sequence).
Subsequence: A246374 (the primes present in this sequence).

Programs

  • PARI
    default(primelimit, 2^30);
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A064216(n) = A064989((2*n)-1);
    isA246371(n) = (A064216(n) < n);
    n = 0; i = 0; while(i < 10000, n++; if(isA246371(n), i++; write("b246371.txt", i, " ", n)));
    (Scheme, with Antti Karttunen's IntSeq-library)
    (define A246371 (MATCHING-POS 1 1 (lambda (n) (< (A064216 n) n))))

A245607 Permutation of natural numbers, the even bisection of A245605 halved: a(n) = A245605(2*n)/2.

Original entry on oeis.org

1, 2, 3, 5, 4, 9, 13, 6, 17, 37, 8, 25, 7, 10, 69, 33, 26, 11, 41, 16, 277, 45, 18, 65, 21, 14, 1109, 15, 52, 73, 57, 74, 35, 209, 82, 293, 141, 34, 53, 329, 12, 1173, 31, 36, 213, 149, 104, 43, 49, 20, 145, 173, 138, 81, 581, 114, 553, 71, 90, 133, 101, 282, 19, 325, 24, 457, 165, 50, 77, 97, 62, 105, 555, 42
Offset: 1

Views

Author

Antti Karttunen, Jul 29 2014

Keywords

Crossrefs

Programs

Formula

a(n) = A245605(2*n)/2.
As a composition of related permutations:
a(n) = A245605(A064216(n)).
a(n) = A245705(A245707(n)).

A251721 Square array of permutations: A(row,col) = A249822(row, A249821(row+1, col)), read by antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 5, 3, 2, 1, 4, 4, 3, 2, 1, 7, 6, 4, 3, 2, 1, 11, 7, 5, 4, 3, 2, 1, 6, 9, 6, 5, 4, 3, 2, 1, 13, 10, 7, 6, 5, 4, 3, 2, 1, 17, 5, 8, 7, 6, 5, 4, 3, 2, 1, 10, 12, 10, 8, 7, 6, 5, 4, 3, 2, 1, 19, 15, 11, 9, 8, 7, 6, 5, 4, 3, 2, 1, 9, 8, 13, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 8, 16, 14, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 23, 19, 15, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 07 2014

Keywords

Comments

These are the "first differences" between permutations of array A249821, in a sense that by composing the first k rows of this array [from left to right, as in a(n) = row_1(row_2(...(row_k(n))))], one obtains row k+1 of A249821.
On row n, the first A250473(n) terms are fixed, and the first non-fixed term comes at A250474(n).

Examples

			The top left corner of the array:
1, 2, 3, 5, 4, 7, 11, 6, 13, 17, 10, 19, 9, 8, 23, 29, 14, 15, 31, 22, ...
1, 2, 3, 4, 6, 7, 9, 10, 5, 12, 15, 8, 16, 19, 21, 22, 13, 24, 11, 27, ...
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 9, 16, 18, 20, 21, 23, 24, ...
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, ...
...
		

Crossrefs

Inverse permutations can be found from array A251722.
Row 1: A064216, Row 2: A249745, Row 3: A250475.

Programs

Formula

A(row,col) = A249822(row, A249821(row+1, col)).
A(row,col) = A078898(A246278(row, A246277(A083221(row+1, col)))).

A253887 Row index of n in A191450: a(3n) = 2n, a(3n+1) = 2n+1, a(3n+2) = a(n+1).

Original entry on oeis.org

1, 1, 2, 3, 1, 4, 5, 2, 6, 7, 3, 8, 9, 1, 10, 11, 4, 12, 13, 5, 14, 15, 2, 16, 17, 6, 18, 19, 7, 20, 21, 3, 22, 23, 8, 24, 25, 9, 26, 27, 1, 28, 29, 10, 30, 31, 11, 32, 33, 4, 34, 35, 12, 36, 37, 13, 38, 39, 5, 40, 41, 14, 42, 43, 15, 44, 45, 2, 46, 47, 16, 48, 49, 17, 50, 51, 6, 52, 53, 18, 54, 55, 19, 56, 57, 7
Offset: 1

Views

Author

Antti Karttunen, Jan 22 2015

Keywords

Comments

a(n) gives the row index of n in square array A191450, or equally, the column index of n in A254051.

Crossrefs

Odd bisection of A126760.
Cf. A254046 (the corresponding column index).

Programs

  • Python
    def a(n):
        if n%3==0: return 2*n//3
        elif n%3==1: return 2*(n - 1)//3 + 1
        else: return a((n - 2)//3 + 1)
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 06 2017

Formula

a(3n) = 2n, a(3n+1) = 2n+1, a(3n+2) = a(n+1).
a(n) = A126760(2n-1).
a(n) = A249746(A003602(A064216(n))). - Antti Karttunen, Feb 04 2015

A244319 Self-inverse permutation of natural numbers: a(1) = 1, a(2n) = A003961(1+a(A064989(2n-1))), a(2n+1) = 1+A003961(a(A064989(2n+1)-1)).

Original entry on oeis.org

1, 3, 2, 9, 6, 5, 26, 11, 4, 21, 8, 125, 56, 25, 16, 15, 344, 115, 36, 1015, 10, 39, 204, 41, 14, 7, 52, 45, 86, 301, 176, 155, 298, 51, 50, 19, 518, 305, 22, 189, 24, 895, 1376, 49, 28, 825, 1268, 11875, 44, 35, 34, 27, 3186, 6625, 2388, 13, 454, 153, 126, 3191, 476, 131
Offset: 1

Views

Author

Antti Karttunen, Jul 18 2014; description corrected and PARI code added Jul 30 2014

Keywords

Comments

After 1, maps each even number to a unique odd number and vice versa, i.e., for all n > 1, A000035(a(n)) XOR A000035(n) = 1, where XOR is given in A003987.

Crossrefs

Related permutations: A048673, A064216, A245609-A245610.
Similar entanglement permutations: A245605-A245606, A235491, A236854, A243347, A244152.

Programs

Formula

a(1) = 1, a(2n) = A003961(1+a(A064989(2n-1))), a(2n+1) = A243501(a(A064989(2n+1)-1)).
As a composition of related permutations:
a(n) = A245609(A048673(n)) = A064216(A245610(n)).

A246361 Numbers n such that if 2n-1 = product_{k >= 1} (p_k)^(c_k), then n >= product_{k >= 1} (p_{k-1})^(c_k), where p_k indicates the k-th prime, A000040(k).

Original entry on oeis.org

1, 2, 3, 5, 8, 11, 13, 14, 17, 18, 23, 25, 26, 28, 32, 33, 38, 39, 41, 43, 50, 53, 58, 59, 61, 63, 68, 73, 74, 77, 83, 86, 88, 93, 94, 95, 98, 104, 113, 116, 122, 123, 128, 131, 137, 138, 140, 143, 149, 158, 163, 167, 172, 173, 176, 179, 182, 185, 188, 193, 194, 200, 203, 212, 213, 215, 218, 221, 228, 230, 233
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2014

Keywords

Comments

Numbers n such that A064216(n) <= n.
Numbers n such that A064989(2n-1) <= n.
The sequence grows as:
a(100) = 332
a(1000) = 3207
a(10000) = 34213
a(100000) = 340703
a(1000000) = 3388490
suggesting that overall, less than one third of natural numbers appear in this sequence, and more than two thirds in the complement, A246362. See also comments in the latter.

Examples

			1 is present, as 2*1 - 1 = empty product = 1.
12 is not present, as (2*12)-1 = 23 = p_9, and p_8 = 19, with 12 < 19.
14 is present, as (2*14)-1 = 27 = p_2^3 = 8, and 14 >= 8.
		

Crossrefs

Complement: A246362.
Union of A246371 and A048674.
Subsequence: A246360.

Programs

  • PARI
    default(primelimit, 2^30);
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A064216(n) = A064989((2*n)-1);
    isA246361(n) = (A064216(n) <= n);
    n = 0; i = 0; while(i < 10000, n++; if(isA246361(n), i++; write("b246361.txt", i, " ", n)));
    (Scheme, with Antti Karttunen's IntSeq-library)
    (define A246361 (MATCHING-POS 1 1 (lambda (n) (<= (A064216 n) n))))
Previous Showing 51-60 of 118 results. Next