cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A302690 a(n) is the smallest integer m such that m*n is a sum of two squares but not one.

Original entry on oeis.org

2, 1, 6, 2, 1, 3, 14, 1, 2, 1, 22, 6, 1, 7, 3, 2, 1, 1, 38, 1, 42, 11, 46, 3, 2, 1, 6, 14, 1, 3, 62, 1, 66, 1, 7, 2, 1, 19, 3, 1, 1, 21, 86, 22, 1, 23, 94, 6, 2, 1, 3, 1, 1, 3, 11, 7, 114, 1, 118, 3, 1, 31, 14, 2, 1, 33, 134, 1, 138, 7, 142, 1, 1, 1, 6, 38, 154, 3, 158
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 11 2018

Keywords

Comments

Previous name was: a(n) is the smallest integer m such that A002828(m*n) = 2.
All terms are squarefree.
Using the sum of two squares theorem it is easy to see that a(n) is either A363340(n) (if A363340(n)*n is not a square) or 2*A363340(n) (if A363340(n)*n is a square). - Peter Schorn, Jul 20 2023

Crossrefs

Programs

  • Maple
    A302690 := proc(n)
        local k ;
        for k from 1 do
            if A002828(k*n) = 2 then
                return k;
            end if;
        end do:
    end proc:
    seq(A302690(n),n=1..100) ; # R. J. Mathar, Apr 16 2018
  • PARI
    a363340(n) = my(r=1); foreach(mattranspose(factor(n)), f, if(f[1]%4==3&&f[2]%2==1, r*=f[1])); r;
    a(n) = my(p=a363340(n)); if(issquare(p*n), 2*p, p); \\ Peter Schorn, Jul 20 2023

Formula

a(n^2) = 2.

Extensions

Name corrected and more terms added by Michel Marcus, Apr 12 2018
Better name from Peter Schorn, Jul 20 2023

A320431 The number of tiles inside a regular n-gon created by lines that run from each of the vertices of the n edges orthogonal to these edges.

Original entry on oeis.org

1, 1, 31, 13, 71, 25, 127, 41, 199, 61, 287, 85, 391, 113, 511, 145, 647, 181, 799, 221, 967, 265, 1151, 313, 1351, 365, 1567, 421, 1799, 481, 2047, 545, 2311, 613, 2591, 685, 2887, 761, 3199, 841, 3527, 925, 3871, 1013, 4231, 1105, 4607, 1201, 4999, 1301, 5407, 1405, 5831, 1513, 6271, 1625, 6727, 1741
Offset: 3

Views

Author

R. J. Mathar, Jan 08 2019

Keywords

Comments

Sequence proposed by Thomas Young: draw the regular n-gon and construct 2*n lines that run from both ends of the n edges perpendicular into the n-gon until they hit an opposite edge. (For n even the lines actually hit another vertex, so there are only n additional lines). a(n) is the number of non-overlapping tiles inside the n-gon with edges that are sections of the lines or n-gon edges.

Crossrefs

Formula

a(2n) = 2*n^2+2*n+1 = A001844(n), n>1. a(2n+1) = 8*n^2-1 = A157914(n), n>1. - Thomas Young (tyoung(AT)district16.org), Nov 11 2017
G.f.: x^3 +x^4 -x^5*(31+13*x-22*x^2-14*x^3+7*x^4+5*x^5) / ( (x-1)^3*(1+x)^3 ). - R. J. Mathar, Jan 21 2019
a(n) = 1+n*A064680(n-2), n>=5. - R. J. Mathar, Jan 21 2019

A174029 a(n) = 3*(3*n+1)*(5 - (-1)^n)/4.

Original entry on oeis.org

3, 18, 21, 45, 39, 72, 57, 99, 75, 126, 93, 153, 111, 180, 129, 207, 147, 234, 165, 261, 183, 288, 201, 315, 219, 342, 237, 369, 255, 396, 273, 423, 291, 450, 309, 477, 327, 504, 345, 531, 363, 558, 381, 585, 399, 612, 417, 639, 435, 666, 453
Offset: 0

Views

Author

Paul Curtz, Mar 06 2010

Keywords

Comments

All entries are multiples of 3.

Programs

  • Magma
    [3*(3*n+1)*(5-(-1)^n)/4: n in [0..50]]; // Vincenzo Librandi, Aug 05 2011
    
  • Mathematica
    LinearRecurrence[{0,2,0,-1},{3,18,21,45},60] (* Harvey P. Dale, Mar 19 2015 *)
  • PARI
    vector(50, n, n--; 3*(3*n+1)*(5-(-1)^n)/4) \\ G. C. Greubel, Nov 02 2018

Formula

a(2n) = 18*n + 3 = 3*A016921(n);
a(2n+1) = 27*n + 18 = A124388(n).
a(n) = A064680(3n) + A064680(3n+1) + A064680(3n+2).
G.f.: ( 3 + 18*x + 15*x^2 + 9*x^3 ) / ( (x-1)^2*(1+x)^2 ). - R. J. Mathar, Jul 02 2011
a(n) = 2*a(n-2) - a(n-4); a(0)=3, a(1)=18, a(2)=21, a(3)=45. - Harvey P. Dale, Mar 19 2015
E.g.f.: (3/4)*(5*(1+3*x)*exp(x) - (1-3*x)*exp(-x)). - G. C. Greubel, Nov 02 2018

A280579 Square array read by antidiagonals downwards giving the first differences A261327(n+p) - A261327(n), with p >= 0.

Original entry on oeis.org

0, 0, 4, 0, -3, 1, 0, 11, 8, 12, 0, -8, 3, 0, 4, 0, 24, 16, 27, 24, 28, 0, -19, 5, -3, 8, 5, 9, 0, 43, 24, 48, 40, 51, 48, 52, 0, -36, 7, -12, 12, 4, 15, 12, 16, 0, 68, 32, 75, 56, 80, 72, 83, 80, 84, 0, -59, 9, -27
Offset: 0

Views

Author

Paul Curtz, Jan 05 2017

Keywords

Comments

Successive rows:
p
0: 0, 0, 0, 0, 0, 0, 0, ...
1: 4, -3, 11, -8, 24, -19, 43, ...
2: 1, 8, 3, 16, 5, 24, 7, ...
3: 12, 0, 27, -3, 48, -12, 75, ...
4: 4, 24, 8, 40, 12, 56, 16, ...
5: 28, 5, 51, 4, 80, -3, 115, ...
6: 9, 48, 15, 72, 21, 96, 27, ...
... .
Main diagonal: alternate 3*n^2, -3.
From p>0, the rows are multiples of 1, 1, 3, 4, 1, 3, 1, 8, 3, 5, 1, 12, 1, 7, 3, 16, 1, ... . Sequences appearing after division: shifted A144433 or A195161, A064680. For p=3, we have (n+2)^2, -n^2.
First column: alternate n^2, 4*(n^2 + n + 1). Its first differences (4, -3, 11, -8, 24, ...) is the sequence of the square array for p=1.
Third column: 0, 3, 8, 15, ... is A005563(n).
Fifth column: 5, 21, 45, 77, ... is a bisection of A061037(n).
Seventh column: 7, 16, 40, 55, 91, 112, ... is a subsequence of A061039(n).
Etc. From the Rydberg spectra of the hydrogen atom (mentioned in A261327).
Starting for instance from p=-3,at the main antidiagonal,yields:
-3: -12, 0, -27, 3, ... see p=3
-2: -1, -8, -3, -16, -5, ... p=2
-1: -4, 3, -11, 8, -24, 19, ... p=1.

Crossrefs

A281098 a(n) is the GCD of the sequence d(n) = A261327(k+n) - A261327(k) for all k.

Original entry on oeis.org

0, 1, 1, 3, 4, 1, 3, 1, 8, 3, 5, 1, 12, 1, 7, 3, 16, 1, 9, 1, 20, 3, 11, 1, 24, 1, 13, 3, 28, 1, 15, 1, 32, 3, 17, 1, 36, 1, 19, 3, 40, 1, 21, 1, 44, 3, 23, 1, 48, 1, 25, 3, 52, 1, 27, 1, 56, 3, 29, 1, 60, 1, 31, 3, 64, 1, 33, 1, 68, 3, 35, 1, 72, 1, 37, 3, 76, 1, 39, 1
Offset: 0

Views

Author

Paul Curtz, Jan 14 2017

Keywords

Comments

Successive sequences:
0: 0, 0, 0, 0, ... = 0 * ( )
1: 4, -3, 11, -8, ... = 1 * ( )
2: 1, 8, 3, 16, ... = 1 * ( ) A195161
3: 12, 0, 27, -3, ... = 3 * (4, 0, 9, -1, ...)
4: 4, 24, 8, 40, ... = 4 * (1, 6, 2, 10, ...) A064680
5; 28, 5, 51, 4, ... = 1 * ( )
6: 9, 48, 15, 72, ... = 3 * (3, 16, 5, 24, ...) A195161
7: 52, 12, 83, 13, ... = 1 * ( )
8: 16, 80, 24, 112, ... = 8 * (2, 10, 3, 14, ...) A064080
9: 84 21, 123, 24, ... = 3 * (28, 7, 41, 8, ...)
10: 25, 120, 35, 160, ... = 5 * (5, 24, 7, 32, ...) A195161

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(-x (-1 - x - 4 x^2 - 5 x^3 - 3 x^4 - 6 x^5 + 3 x^6 - 5 x^7 + 4 x^8 - x^9 + x^10))/((x^2 - x + 1) (1 + x + x^2) (x - 1)^2*(1 + x)^2*(1 + x^2)^2), {x, 0, 79}], x] (* Michael De Vlieger, Feb 02 2017 *)
  • PARI
    f(n) = numerator((4 + n^2)/4);
    a(n) = gcd(vector(1000, k, f(k+n) - f(k))); \\ Michel Marcus, Jan 15 2017
    
  • PARI
    A281098(n) = if(n%2, gcd((n\2)-1,3), n>>(bitand(n,2)/2)); \\ Antti Karttunen, Feb 15 2023

Formula

G.f.: -x*( -1 - x - 4*x^2 - 5*x^3 - 3*x^4 - 6*x^5 + 3*x^6 - 5*x^7 + 4*x^8 - x^9 + x^10 )/( (x^2 - x + 1)*(1 + x + x^2)*(x - 1)^2*(1 + x)^2*(1 + x^2)^2 ). - R. J. Mathar, Jan 31 2017
a(2*k) = A022998(k).
a(2*k+1) = A109007(k-1).
a(3*k) = interleave 3*k*(3 +(-1)^k)/2, 3.
a(3*k+1) = interleave 1, A166304(k).
a(3*k+2) = interleave A166138(k), 1.
a(4*k) = 4*k.
a(4*k+1) = period 3: repeat [1, 1, 3].
a(4*k+2) = 1 + 2*k.
a(4*k+3) = period 3: repeat [3, 1, 1].
a(n+12) - a(n) = 6*A131743(n+3).
a(n) = (18*n + 40 - 16*cos(n*Pi/3) + 9*n*cos(n*Pi/2) + 32*cos(2*n*Pi/3) + (18*n - 40)*cos(n*Pi) + 3*n*cos(3*n*Pi/2) - 16*cos(5*n*Pi/3))/48. - Wesley Ivan Hurt, Oct 04 2018

Extensions

Corrected and extended by Michel Marcus, Jan 15 2017

A174007 a(2n+1)=2. a(2n)= 1-n.

Original entry on oeis.org

2, 0, 2, -1, 2, -2, 2, -3, 2, -4, 2, -5, 2, -6, 2, -7, 2, -8, 2, -9, 2, -10, 2, -11, 2, -12, 2, -13, 2, -14, 2, -15, 2, -16, 2, -17, 2, -18, 2, -19, 2, -20, 2, -21, 2, -22, 2, -23, 2, -24, 2, -25, 2, -26, 2, -27, 2, -28, 2, -29, 2, -30, 2, -31, 2, -32, 2, -33, 2, -34, 2, -35, 2
Offset: 1

Views

Author

Paul Curtz, Mar 05 2010

Keywords

Comments

A064680(n)+A022998(n-1) =c(n) = 2, 2, 10, 5, 18, 8, 26, 11,.. has differences c(2n)-c(2n-1) = -5*(n-1) = -A008587(n-1).

Crossrefs

Cf. A147657.

Formula

a(n) = n/4+3/2-(-1)^n*(n/4+1/2).
a(n)= +2*a(n-2) -a(n-4). G.f.: -x*(-2+2*x^2+x^3) / ( (x-1)^2*(1+x)^2 ).
a(n+1)-a(n) = (-1)^n*A008619(n+1).
a(n) = A064680(n)-A022998(n-1).
Previous Showing 11-16 of 16 results.