cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A076110 Triangle (read by rows) in which the n-th row contains first n terms of an arithmetic progression with first term 1 and common difference (n-1).

Original entry on oeis.org

1, 1, 2, 1, 3, 5, 1, 4, 7, 10, 1, 5, 9, 13, 17, 1, 6, 11, 16, 21, 26, 1, 7, 13, 19, 25, 31, 37, 1, 8, 15, 22, 29, 36, 43, 50, 1, 9, 17, 25, 33, 41, 49, 57, 65, 1, 10, 19, 28, 37, 46, 55, 64, 73, 82, 1, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101, 1, 12, 23, 34, 45, 56, 67, 78, 89, 100, 111, 122
Offset: 1

Views

Author

Amarnath Murthy, Oct 09 2002

Keywords

Comments

Leading diagonal contains n^2 + 1 (A002522).
Sum of the n-th row is (n+1)(n^2+2)/2 (A064808).

Examples

			1;
1, 2;
1, 3, 5;
1, 4, 7, 10;
1, 5, 9, 13, 17;
1, 6, 11, 16, 21, 26;
1, 7, 13, 19, 25, 31, 37; ...
		

Crossrefs

Cf. A002522, A064808, A076111 (row products), A079904.

Programs

  • GAP
    Flat(List([1..12],n->List([1..n],k->1+(n-1)*(k-1)))); # Muniru A Asiru, Dec 05 2018
    
  • Magma
    /* As triangle */ [[1+(n-1)*(k-1): k in [1..n]]: n in [1.. 12]]; // Vincenzo Librandi, Dec 05 2018
  • Maple
    T:= (n,k) -> 1+(n-1)*(k-1):for n from 1 to 10 do seq(T(n,k),k=1..n) od; # Robert Israel, Dec 04 2018
  • Mathematica
    T[n_, k_] := 1 + (n-1) * (k-1); Table[T[n, k], {n,1,10}, {k,1,n}] // Flatten (* Amiram Eldar, Dec 04 2018 *)

Formula

A076110(n) = L(n) with L=seq(seq(n*k+1, k = 0..n), n = 0..+inf). - Yalcin Aktar, Jul 14 2009
From Robert Israel, Dec 04 2018: (Start)
T(n,k) = 1 + (n-1)*(k-1).
G.f. as triangle: (1-x-x*y+2*x^2*y+2*x^2*y^2-3*x^3*y^2)*x*y/((1-x)^2*(1-x*y)^3).
G.f. as sequence: x/(1-x) + Sum_{m>=0} (-m*(m+1)*x^((m^2+3*m+4)/2) + (1+m*(m+1))*x^((m^2+3*m+6)/2))/(1-x)^2.
(End)

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 20 2003

A081113 Number of paths of length n-1 a king can take from one side of an n X n chessboard to the opposite side.

Original entry on oeis.org

1, 4, 17, 68, 259, 950, 3387, 11814, 40503, 136946, 457795, 1515926, 4979777, 16246924, 52694573, 170028792, 546148863, 1747255194, 5569898331, 17698806798, 56076828573, 177208108824, 558658899825, 1757365514652
Offset: 1

Views

Author

David Scambler, Apr 16 2003

Keywords

Comments

a(n) = number of sequences (a_1,a_2,...,a_n) with 1<=a_i<=n for all i and |a_(i+1)-a_(i)|<=1 for 1<=i<=n-1. For n=2 the sequences are 11, 12, 21, 22. - David Callan, Oct 24 2004
Simon Plouffe proposes the ordinary generating function A(x) (for offset zero) in the implicit form 3-10*x+12*x^2+(-4+30*x+54*x^3-72*x^2)*A(x)+(81*x^4+54*x^2+1-12*x-108*x^3)*A(x)^2 = 0 which delivers at least the first 200 terms (i.e., as far as tested) correctly. - David Scambler, R. J. Mathar, Jan 06 2011

Examples

			For n=2 the 4 paths are (0,0)->(0,1); (0,0)->(1,1); (1,0)->(0,1); (1,0)->(1,1).
		

Crossrefs

Cf. A005773 (paths which begin at a corner), diagonal of A296449.

Programs

  • Maple
    A026300 := proc(n,k) add( binomial(n,2*i+n-k)*(binomial(2*i+n-k,i) -binomial(2*i+n-k,i-1)), i=0..floor(k/2)) ; end proc:
    A081113 := proc(n) add(k*(n-k+1)*A026300(n-1,k-1),k=1..n) ; end proc:
    seq(A081113(n),n=1..20) ;
    # R. J. Mathar, Jun 09 2010
  • Mathematica
    t[n_, k_] := Sum[ Binomial[n, 2i + n - k] (Binomial[2i + n - k, i] - Binomial[2i + n - k, i - 1]), {i, 0, Floor[k/2]}] (* from A026300 *); f[n_] := Sum[ k(n - k + 1)t[n - 1, k - 1], {k, n}]; Array[f, 24]

Formula

a(n) = Sum_{k=1..n} k*(n-k+1)*M(n-1, k-1) where k*(n-k+1) is the triangular view of A003991 and M() is the Motzkin triangle A026300.
Conjecture: g.f.(x)=z*A064808(z), where z=x*A001006(x) and A...(x) are the corresponding generating functions. - R. J. Mathar, Jul 07 2009
Conjecture from WolframAlpha (verified for 1<=n<=180): (n+3)*a(n+4) = 27*n*a(n) +27*a(n+1) -9*(2*n+5)*a(n+2) +(8*n+21)*a(n+3). - Alexander R. Povolotsky, Jan 04 2011
Shorter recurrence: (n-1)*(2*n-7)*a(n) = (10*n^2-39*n+23)*a(n-1) - 3*(2*n^2-n-9)*a(n-2) - 9*(n-3)*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 28 2012
a(n) ~ 3^(n-1)*n*(1-4/(sqrt(3*Pi*n))). - Vaclav Kotesovec, Oct 28 2012
a(n) = (n+2)*3^(n-2)+2*Sum_{k=0..n-3} (n-k-2)*3^(n-k-3)*A001006(k). [Yaqubi Corollary 2.8] - R. J. Mathar, Dec 13 2017

A076111 Product of terms in n-th row of A076110.

Original entry on oeis.org

1, 2, 15, 280, 9945, 576576, 49579075, 5925744000, 939536222625, 190787784140800, 48279601331512551, 14894665739501184000, 5502449072258318805625, 2397950328737212204032000
Offset: 0

Views

Author

Amarnath Murthy, Oct 09 2002

Keywords

Crossrefs

Programs

  • GAP
    List([0..15], n-> Product([1..n], j-> j*n+1) ); # G. C. Greubel, Mar 04 2020
  • Magma
    [1] cat [&*[j*n+1: j in [1..n]]: n in [1..15]]; // G. C. Greubel, Mar 04 2020
    
  • Maple
    seq( mul(j*n+1, j=1..n), n=0..15); # G. C. Greubel, Mar 04 2020
  • Mathematica
    Table[Product[j*n+1, {j,n}], {n,0,15}] (* G. C. Greubel, Mar 04 2020 *)
  • Maxima
    A076111(n):=prod(1+n*k,k,1,n)$
    makelist(A076111(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
    
  • PARI
    vector(16, n, my(m=n-1); prod(j=1,m, j*m+1)) \\ G. C. Greubel, Mar 04 2020
    
  • Sage
    [product(j*n+1 for j in (1..n)) for n in (0..15)] # G. C. Greubel, Mar 04 2020
    

Formula

a(n) = Prod_{k=1..n} (1+n*k). - Yalcin Aktar, Jul 14 2009
a(n) = n^n * Pochhammer(n, 1 + 1/n). - G. C. Greubel, Mar 04 2020
a(n) = A092985(n)*(n^2+1). - R. J. Mathar, Mar 30 2023

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 20 2003

A131676 a(n) = (Product_{i=1..6} n^i+i) / 6!.

Original entry on oeis.org

1, 7, 14245, 28405300, 9191136045, 886286703456, 38188743738145, 932714257963020, 14966184483875625, 173860405001195185, 1563721100613810061, 11427034989921521488, 70319024498214551605, 374482754394635213250, 1763001772206469563945, 7462412915610398239816
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A131685.

Programs

Formula

G.f.: (1 - 15*x + 14322*x^2 + 28091987*x^3 + 8569506575*x^4 + 690621422337*x^5 + 20769948618958*x^6 + 283347184706283*x^7 + 1969675285865562*x^8 + 7493939424807955*x^9 + 16292973927985678*x^10 + 20712738704664489*x^11 + 15498276638623618*x^12 + 6765765599122915*x^13 + 1679542499740050*x^14 + 226176197184209*x^15 + 15278037714093*x^16 + 454493699352*x^17 + 4732512736*x^18 + 10869320*x^19 + 1575*x^20)/(1 - x)^22. - M. F. Hasler, May 02 2015

Extensions

Definition made explicit by M. F. Hasler, May 02 2015

A131679 a(n) = (Product_{i=1..9} n^i+i) / 9!.

Original entry on oeis.org

1, 10, 524816325, 15995379784360900, 5136081211768056707885, 104827108835105429096703456, 359044402823940369662885183425, 354548318931625565271233374406000, 140230322081790179721500725877795625, 27516367648544953143193233240569070880, 3102623679344954347223585172112606310061
Offset: 0

Views

Author

Keywords

Comments

See A131685 about well-definedness. - M. F. Hasler, May 02 2015

Programs

Extensions

Definition made explicit by M. F. Hasler, May 02 2015

A144693 Triangle read by rows, A000012 * (3*A144328 - 2*A000012), where A000012 means a lower triangular matrix of all 1's.

Original entry on oeis.org

1, 2, 1, 3, 2, 4, 4, 3, 8, 7, 5, 4, 12, 14, 10, 6, 5, 16, 21, 20, 13, 7, 6, 20, 28, 30, 26, 16, 8, 7, 24, 35, 40, 39, 32, 19, 9, 8, 28, 42, 50, 52, 48, 38, 22, 10, 9, 32, 49, 60, 65, 64, 57, 44, 25, 11, 10, 36, 56, 70, 78, 80, 76, 66, 50, 28
Offset: 1

Views

Author

Gary W. Adamson, Sep 19 2008

Keywords

Examples

			Partial sums by columns of the triangle (3*A144328 - 2*A000012):
  1;
  1, 1;
  1, 1, 4;
  1, 1, 4, 7;
  1, 1, 4, 7, 10;
  ...
First few rows of the triangle:
  1;
  2, 1
  3, 2,  4;
  4, 3,  8,  7;
  5, 4, 12, 14, 10;
  6, 5, 16, 21, 20, 13;
  7, 6, 20, 28, 30, 26, 16;
  8, 7, 24, 35, 40, 39, 32, 19;
  ...
		

Crossrefs

Programs

  • Magma
    A144693:= func< n,k | k eq 1 select n else (3*k-5)*(n-k+1) >;
    [A144693(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 19 2021
    
  • Mathematica
    T[n_, k_]:= (3*k -5 +3*Boole[k==1])*(n-k+1);
    Table[T[n, k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Oct 19 2021 *)
  • Sage
    def A144693(n,k): return (3*k -5 +3*bool(k==1))*(n-k+1)
    flatten([[A144693(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Oct 19 2021

Formula

Sum_{k=1..n} T(n, k) = A064808(n).
T(n, k) = (3*k -5 +3*[k=1])*(n-k+1). - G. C. Greubel, Oct 19 2021

A373170 Main diagonal of A373169.

Original entry on oeis.org

1, 3, 9, 22, 45, 81, 43, 24, 288, 118, 138, 585, 184, 918, 288, 232, 294, 351, 559, 2586, 1179, 3586, 117, 72, 3913, 2949, 5949, 1585, 7239, 8811, 3595, 3789, 3537, 5758, 1968, 18, 6454, 4152, 4374, 1687, 549, 7794, 3922, 8313, 828, 2674, 4251, 2646, 5548, 3636, 3879, 799
Offset: 2

Views

Author

Paolo Xausa, May 28 2024

Keywords

Comments

a(n) is the zeroless analog of the (n-1)-th n-gonal number.

Crossrefs

Programs

  • Mathematica
    noz[n_] := FromDigits[DeleteCases[IntegerDigits[n], 0]];
    A373170[n_] := Fold[noz[#2*(n-2) + 1 + #] &, 1, Range[n-2]];
    Array[A373170, 100, 2]

Formula

a(n) = A373169(n,n-1).

A131677 a(n) = (Product_{i=1..7} n^i+i) / 7!.

Original entry on oeis.org

1, 8, 274725, 8903032600, 21521701559085, 9892478959203456, 1527238784041075105, 109733832449349303000, 4483781212288588835625, 118795734924428077310080, 2233888850312257843810061, 31811523551546985038211552, 359951182400070234774044725
Offset: 0

Views

Author

Keywords

Comments

See A131685 about well-definedness. - M. F. Hasler, May 02 2015

Programs

Extensions

Definition made explicit by M. F. Hasler, May 02 2015

A131678 a(n) = (Product_{i=1..8} n^i+i) / 8!.

Original entry on oeis.org

1, 9, 9065925, 7310502643675, 176327300873583405, 483041091658815453456, 320648364425775841520065, 79074323113562613259765875, 9403175220694650942397475625, 639220975955961365494757841040, 27923612862792073359883606310061, 852385355738368243011331354210716, 19346552845649626158477975728463925
Offset: 0

Views

Author

Keywords

Comments

See A131685 about well-definedness. - M. F. Hasler, May 02 2015

Programs

Extensions

Definition made explicit by M. F. Hasler, May 02 2015

A330892 Square array of polygonal numbers read by descending antidiagonals (the transpose of A317302).

Original entry on oeis.org

0, 1, 0, 0, 1, 0, -3, 1, 1, 0, -8, 0, 2, 1, 0, -15, -2, 3, 3, 1, 0, -24, -5, 4, 6, 4, 1, 0, -35, -9, 5, 10, 9, 5, 1, 0, -48, -14, 6, 15, 16, 12, 6, 1, 0, -63, -20, 7, 21, 25, 22, 15, 7, 1, 0, -80, -27, 8, 28, 36, 35, 28, 18, 8, 1, 0, -99, -35, 9, 36, 49, 51, 45, 34, 21, 9, 1, 0
Offset: 1

Views

Author

Robert G. Wilson v, Apr 27 2020

Keywords

Comments

\c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
r\
_0 0 1 0 -3 -8 -15 -24 -35 -48 -63 -80 -99 -120 -143 -168 -195 A067998
_1 0 1 1 0 -2 -5 -9 -14 -20 -27 -35 -44 -54 -65 -77 -90 A080956
_2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 A001477
_3 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 A000217
_4 0 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 A000290
_5 0 1 5 12 22 35 51 70 92 117 145 176 210 247 287 330 A000326
_6 0 1 6 15 28 45 66 91 120 153 190 231 276 325 378 435 A000384
_7 0 1 7 18 34 55 81 112 148 189 235 286 342 403 469 540 A000566
_8 0 1 8 21 40 65 96 133 176 225 280 341 408 481 560 645 A000567
_9 0 1 9 24 46 75 111 154 204 261 325 396 474 559 651 750 A001106
10 0 1 10 27 52 85 126 175 232 297 370 451 540 637 742 855 A001107
11 0 1 11 30 58 95 141 196 260 333 415 506 606 715 833 960 A051682
12 0 1 12 33 64 105 156 217 288 369 460 561 672 793 924 1065 A051624
13 0 1 13 36 70 115 171 238 316 405 505 616 738 871 1015 1170 A051865
14 0 1 14 39 76 125 186 259 344 441 550 671 804 949 1106 1275 A051866
15 0 1 15 42 82 135 201 280 372 477 595 726 870 1027 1197 1380 A051867
...
Each row has a second forward difference of (r-2) and each column has a forward difference of c(c-1)/2.

Crossrefs

Cf. A317302 (the same array) but read by ascending antidiagonals.
Sub-arrays: A089000, A139600, A206735;
Number of times k>1 appears: A129654, First occurrence of k: A063778.

Programs

  • Mathematica
    Table[ PolygonalNumber[r - c, c], {r, 0, 11}, {c, r, 0, -1}] // Flatten

Formula

P(r, c) = (r - 2)(c(c-1)/2) + c.
Previous Showing 11-20 of 20 results.