A382292
Numbers k such that A382290(k) = 1.
Original entry on oeis.org
8, 24, 27, 32, 40, 54, 56, 64, 72, 88, 96, 104, 108, 120, 125, 135, 136, 152, 160, 168, 184, 189, 192, 200, 224, 232, 243, 248, 250, 264, 270, 280, 288, 296, 297, 312, 320, 328, 343, 344, 351, 352, 360, 375, 376, 378, 392, 408, 416, 424, 432, 440, 448, 456, 459, 472, 480, 486, 488, 500
Offset: 1
Subsequences (numbers of the form):
A030078 (p^3),
A050997 (p^5),
A030516 (p^6),
A179665 (p^9),
A030629 (p^10),
A030631 (p^12),
A065036 (p^3*q),
A178740 (p^5*q),
A189987 (p^6*q),
A179692 (p^9*q),
A143610 (p^2*q^3),
A179646 (p^5*q^2),
A189990 (p^2*q^6),
A179702 (p^4*q^5),
A179666 (p^4*q^3),
A190464 (p^4*q^6),
A163569 (p^3*q^2*r),
A189975 (p*q*r^3),
A190115 (p^2*q^3*r^4),
A381315,
A048109.
-
f[p_, e_] := DigitCount[e, 2, 1] - 1; q[1] = False; q[n_] := Plus @@ f @@@ FactorInteger[n] == 1; Select[Range[500], q]
-
isok(k) = vecsum(apply(x -> hammingweight(x) - 1, factor(k)[, 2])) == 1;
A065127
Nonsquares with number of prime factors equal to twice the number of distinct prime factors.
Original entry on oeis.org
24, 40, 54, 56, 88, 104, 135, 136, 152, 184, 189, 232, 240, 248, 250, 296, 297, 328, 336, 344, 351, 360, 375, 376, 424, 459, 472, 488, 504, 513, 528, 536, 540, 560, 568, 584, 600, 621, 624, 632, 664, 686, 712, 756, 776, 783, 792, 808, 810, 816, 824, 837
Offset: 1
240=2^4*3*5 so there are 3 distinct prime factors, sum of exponents is 6=2*3 and 240 is not a square so is in the list.
-
Select[Range[1000],!IntegerQ[Sqrt[#]]&&PrimeOmega[#]==2*PrimeNu[#]&] (* Harvey P. Dale, Jul 05 2023 *)
-
n=0; for (m=1, 10^9, if (issquare(m), next); if (bigomega(m) == 2*omega(m), write("b065127.txt", n++, " ", m); if (n==1000, return))) \\ Harry J. Smith, Oct 12 2009
-
is(n)=my(f=factor(n)); issquare(n) && bigomega(f)==2*omega(f) \\ Charles R Greathouse IV, Oct 15 2015; corrected by Michel Marcus, Apr 25 2020
A275345
Characteristic polynomials of a square matrix based on A051731 where A051731(1,N)=1 and A051731(N,N)=0 and where N=size of matrix, analogous to the Redheffer matrix.
Original entry on oeis.org
1, 1, -1, -1, -1, 1, -1, 0, 2, -1, 0, 0, 2, -3, 1, -1, 2, 1, -5, 4, -1, 1, -3, 5, -8, 9, -5, 1, -1, 4, -4, -5, 15, -14, 6, -1, 0, -1, 6, -17, 29, -31, 20, -7, 1, 0, 0, 2, -13, 36, -55, 50, -27, 8, -1, 1, -7, 23, -50, 84, -112, 112, -78, 35, -9, 1
Offset: 0
{
{ 1},
{ 1, -1},
{-1, -1, 1},
{-1, 0, 2, -1},
{ 0, 0, 2, -3, 1},
{-1, 2, 1, -5, 4, -1},
{ 1, -3, 5, -8, 9, -5, 1},
{-1, 4, -4, -5, 15, -14, 6, -1},
{ 0, -1, 6, -17, 29, -31, 20, -7, 1},
{ 0, 0, 2, -13, 36, -55, 50, -27, 8, -1},
{ 1, -7, 23, -50, 84, -112, 112, -78, 35, -9, 1}
}
Cf.
A051731,
A008683,
A000040,
A001248,
A006881,
A030078,
A030514,
A054753,
A000096,
A001622,
A272874,
A075795.
-
Clear[x, AA, nn, s]; Monitor[AA = Flatten[Table[A = Table[Table[If[Mod[n, k] == 0, 1, 0], {k, 1, nn}], {n, 1, nn}]; MatrixForm[A]; a = A[[1, nn]]; A[[1, nn]] = A[[nn, nn]]; A[[nn, nn]] = a; CoefficientList[CharacteristicPolynomial[A, x], x], {nn, 1, 10}]], nn]
A307341
Products of four primes, not all distinct.
Original entry on oeis.org
16, 24, 36, 40, 54, 56, 60, 81, 84, 88, 90, 100, 104, 126, 132, 135, 136, 140, 150, 152, 156, 184, 189, 196, 198, 204, 220, 225, 228, 232, 234, 248, 250, 260, 276, 294, 296, 297, 306, 308, 315, 328, 340, 342, 344, 348, 350, 351, 364, 372, 375, 376, 380, 414
Offset: 1
-
isok(n) = (bigomega(n) == 4) && (omega(n) < 4); \\ Michel Marcus, Apr 03 2019
-
import sympy
def bigomega(n): return sympy.primeomega(n)
def omega(n): return len(sympy.primefactors(n))
print([n for n in range(1, 1000) if bigomega(n) == 4 and omega(n) < 4])
A343511
a(n) = 1 + Sum_{d|n, d < n} a(d)^2.
Original entry on oeis.org
1, 2, 2, 6, 2, 10, 2, 42, 6, 10, 2, 146, 2, 10, 10, 1806, 2, 146, 2, 146, 10, 10, 2, 23226, 6, 10, 42, 146, 2, 314, 2, 3263442, 10, 10, 10, 42814, 2, 10, 10, 23226, 2, 314, 2, 146, 146, 10, 2, 542731938, 6, 146, 10, 146, 2, 23226, 10, 23226, 10, 10, 2, 141578, 2, 10, 146, 10650056950806, 10
Offset: 1
-
a:= proc(n) option remember;
1+add(a(d)^2, d=numtheory[divisors](n) minus {n})
end:
seq(a(n), n=1..65); # Alois P. Heinz, Apr 17 2021
-
a[n_] := a[n] = 1 + Sum[If[d < n, a[d]^2, 0], {d, Divisors[n]}]; Table[a[n], {n, 65}]
-
lista(nn) = {my(va = vector(nn)); for (n=1, nn, va[n] = 1 + sumdiv(n, d, if (dMichel Marcus, Apr 18 2021
-
from functools import lru_cache
from sympy import divisors
@lru_cache(maxsize=None)
def A343511(n): return 1+sum(A343511(d)**2 for d in divisors(n) if d < n) # Chai Wah Wu, Apr 17 2021
A359597
Indices k such that A358777(k) is odd, and k is not an odd semiprime.
Original entry on oeis.org
1, 135, 189, 297, 315, 351, 375, 459, 495, 513, 525, 585, 621, 693, 735, 765, 783, 819, 825, 837, 855, 875, 975, 999, 1029, 1035, 1071, 1107, 1155, 1161, 1197, 1269, 1275, 1287, 1305, 1365, 1375, 1395, 1425, 1431, 1449, 1593, 1617, 1625, 1647, 1665, 1683, 1715, 1725, 1785, 1809, 1815, 1827, 1845, 1881
Offset: 1
Odd terms of
A065036 form a subset.
A375076
Numbers whose prime factorization exponents include at least one 1, at least one 3 and no other exponents.
Original entry on oeis.org
24, 40, 54, 56, 88, 104, 120, 135, 136, 152, 168, 184, 189, 232, 248, 250, 264, 270, 280, 296, 297, 312, 328, 344, 351, 375, 376, 378, 408, 424, 440, 456, 459, 472, 488, 513, 520, 536, 552, 568, 584, 594, 616, 621, 632, 664, 680, 686, 696, 702, 712, 728, 744, 750
Offset: 1
-
Select[Range[750], Union[FactorInteger[#][[;; , 2]]] == {1, 3} &]
-
is(k) = Set(factor(k)[,2]) == [1, 3];
A375934
Numbers whose prime factorization has a second-largest exponent that equals 1.
Original entry on oeis.org
12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 198, 204
Offset: 1
Subsequences:
A054753,
A065036,
A072357,
A095990,
A096156,
A178739,
A178740,
A179664,
A179668,
A179692,
A189987,
A360793,
A375076.
-
q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Max[0, Max[Select[e, # < Max[e] &]]] == 1]; Select[Range[300], q]
-
is(n) = if(n == 1, 0, my(e = factor(n)[,2]); e = select(x -> x < vecmax(e), e); if(#e == 0, 0, vecmax(e) == 1));
A377844
Numbers that have a single odd exponent larger than 1 in their prime factorization.
Original entry on oeis.org
8, 24, 27, 32, 40, 54, 56, 72, 88, 96, 104, 108, 120, 125, 128, 135, 136, 152, 160, 168, 184, 189, 200, 224, 232, 243, 248, 250, 264, 270, 280, 288, 296, 297, 312, 328, 343, 344, 351, 352, 360, 375, 376, 378, 384, 392, 408, 416, 424, 432, 440, 456, 459, 472, 480, 486, 488, 500
Offset: 1
-
q[n_] := Count[FactorInteger[n][[;; , 2]], _?(# > 1 && OddQ[#] &)] == 1; Select[Range[500], q]
-
is(k) = #select(x -> x>1 && x%2, factor(k)[, 2]) == 1;
A297401
Non-sphenic numbers with exactly 8 divisors.
Original entry on oeis.org
24, 40, 54, 56, 88, 104, 128, 135, 136, 152, 184, 189, 232, 248, 250, 296, 297, 328, 344, 351, 375, 376, 424, 459, 472, 488, 513, 536, 568, 584, 621, 632, 664, 686, 712, 776, 783, 808, 824, 837, 856, 872, 875, 904, 999, 1016, 1029, 1048, 1096, 1107, 1112, 1161, 1192
Offset: 1
-
N:= 1000: # to get all terms <= N
P:= select(isprime, [2,seq(i,i=3..N)]):
R:= NULL:
for p in P do
if p^7 <= N then R:= R, p^7 fi;
if p^3 > N then break fi;
for q in P while p^3*q <= N do if q <> p then R:= R, p^3*q fi od:
od:
sort([R]); # Robert Israel, Dec 31 2017
-
Select[Range@ 1200, And[DivisorSigma[0, #] == 8, Nand[PrimeNu[#] == 3, PrimeOmega[#] == 3]] &] (* Michael De Vlieger, Dec 29 2017 *)
-
isok(n) = !((bigomega(n)==3) && (omega(n)==3)) && (numdiv(n) == 8); \\ Michel Marcus, Dec 29 2017
-
from sympy import primepi, primerange, integer_nthroot
def A297401(n):
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return int(n+x-sum(primepi(x//p**3) for p in primerange(integer_nthroot(x,3)[0]+1))+primepi(integer_nthroot(x,4)[0])-primepi(integer_nthroot(x,7)[0]))
return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025
Comments