cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 47 results. Next

A382292 Numbers k such that A382290(k) = 1.

Original entry on oeis.org

8, 24, 27, 32, 40, 54, 56, 64, 72, 88, 96, 104, 108, 120, 125, 135, 136, 152, 160, 168, 184, 189, 192, 200, 224, 232, 243, 248, 250, 264, 270, 280, 288, 296, 297, 312, 320, 328, 343, 344, 351, 352, 360, 375, 376, 378, 392, 408, 416, 424, 432, 440, 448, 456, 459, 472, 480, 486, 488, 500
Offset: 1

Views

Author

Amiram Eldar, Mar 21 2025

Keywords

Comments

First differs from A374590 and A375432 at n = 25: A374590(25) = A375432(25) = 216 is not a term of this sequence.
Numbers k such that A382291(k) = 2, i.e., numbers whose number of infinitary divisors is twice the number of their unitary divisors.
Numbers whose prime factorization has a single exponent that is a sum of two distinct powers of 2 (A018900) and all the other exponents, if they exist, are powers of 2. Equivalently, numbers of the form p^e * m, where p is a prime, e is a term in A018900, and m is a term in A138302 that is coprime to p.
If k is a term then k^2 is also a term. If m is a term in A138302 that is coprime to k then k * m is also a term. The primitive terms, i.e., the terms that cannot be generated from smaller terms using these rules, are the numbers of the form p^(2^i+1), where p is prime and i >= 1.
Analogous to A060687, which is the sequence of numbers k with prime excess A046660(k) = 2.
The asymptotic density of this sequence is A271727 * Sum_{p prime} (((1 - 1/p)/f(1/p)) * Sum_{k>=1} 1/p^A018900(k)) = 0.11919967112489084407..., where f(x) = 1 - x^3 + Sum_{k>=2} (x^(2^k)-x^(2^k+1)).

Crossrefs

Subsequences (numbers of the form): A030078 (p^3), A050997 (p^5), A030516 (p^6), A179665 (p^9), A030629 (p^10), A030631 (p^12), A065036 (p^3*q), A178740 (p^5*q), A189987 (p^6*q), A179692 (p^9*q), A143610 (p^2*q^3), A179646 (p^5*q^2), A189990 (p^2*q^6), A179702 (p^4*q^5), A179666 (p^4*q^3), A190464 (p^4*q^6), A163569 (p^3*q^2*r), A189975 (p*q*r^3), A190115 (p^2*q^3*r^4), A381315, A048109.

Programs

  • Mathematica
    f[p_, e_] := DigitCount[e, 2, 1] - 1; q[1] = False; q[n_] := Plus @@ f @@@ FactorInteger[n] == 1; Select[Range[500], q]
  • PARI
    isok(k) = vecsum(apply(x -> hammingweight(x) - 1, factor(k)[, 2])) == 1;

A065127 Nonsquares with number of prime factors equal to twice the number of distinct prime factors.

Original entry on oeis.org

24, 40, 54, 56, 88, 104, 135, 136, 152, 184, 189, 232, 240, 248, 250, 296, 297, 328, 336, 344, 351, 360, 375, 376, 424, 459, 472, 488, 504, 513, 528, 536, 540, 560, 568, 584, 600, 621, 624, 632, 664, 686, 712, 756, 776, 783, 792, 808, 810, 816, 824, 837
Offset: 1

Views

Author

Olivier Gérard, Nov 14 2001

Keywords

Comments

Close to A065036 but not the same. One of several quasi-square classes.

Examples

			240=2^4*3*5 so there are 3 distinct prime factors, sum of exponents is 6=2*3 and 240 is not a square so is in the list.
		

Programs

  • Mathematica
    Select[Range[1000],!IntegerQ[Sqrt[#]]&&PrimeOmega[#]==2*PrimeNu[#]&] (* Harvey P. Dale, Jul 05 2023 *)
  • PARI
    n=0; for (m=1, 10^9, if (issquare(m), next); if (bigomega(m) == 2*omega(m), write("b065127.txt", n++, " ", m); if (n==1000, return))) \\ Harry J. Smith, Oct 12 2009
    
  • PARI
    is(n)=my(f=factor(n)); issquare(n) && bigomega(f)==2*omega(f) \\ Charles R Greathouse IV, Oct 15 2015; corrected by Michel Marcus, Apr 25 2020

Formula

n = prod( p(i)^e(i)) i in [1, k] => sum( e(i)), i in [1, k] == 2k

Extensions

OFFSET changed from 0 to 1 by Harry J. Smith, Oct 11 2009

A275345 Characteristic polynomials of a square matrix based on A051731 where A051731(1,N)=1 and A051731(N,N)=0 and where N=size of matrix, analogous to the Redheffer matrix.

Original entry on oeis.org

1, 1, -1, -1, -1, 1, -1, 0, 2, -1, 0, 0, 2, -3, 1, -1, 2, 1, -5, 4, -1, 1, -3, 5, -8, 9, -5, 1, -1, 4, -4, -5, 15, -14, 6, -1, 0, -1, 6, -17, 29, -31, 20, -7, 1, 0, 0, 2, -13, 36, -55, 50, -27, 8, -1, 1, -7, 23, -50, 84, -112, 112, -78, 35, -9, 1
Offset: 0

Views

Author

Mats Granvik, Jul 24 2016

Keywords

Comments

From Mats Granvik, Sep 30 2017: (Start)
Conjecture: The largest absolute value of the eigenvalues of these characteristic polynomials appear to have the same prime signature in the factorization of the matrix sizes N.
In other words: Let b(N) equal the sequence of the largest absolute values of the eigenvalues of the characteristic polynomials of the matrices of size N. b(N) is then a sequence of truncated eigenvalues starting:
b(N=1..infinity)
= 1.00000, 1.61803, 1.61803, 2.00000, 1.61803, 2.20557, 1.61803, 2.32472, 2.00000, 2.20557, 1.61803, 2.67170, 1.61803, 2.20557, 2.20557, 2.61803, 1.61803, 2.67170, 1.61803, 2.67170, 2.20557, 2.20557, 1.61803, 3.08032, 2.00000, 2.20557, 2.32472, 2.67170, 1.61803, 2.93796, 1.61803, 2.89055, 2.20557, 2.20557, 2.20557, 3.21878, 1.61803, 2.20557, 2.20557, 3.08032, 1.61803, 2.93796, 1.61803, 2.67170, 2.67170, 2.20557, 1.61803, 3.45341, 2.00000, 2.67170, 2.20557, 2.67170, 1.61803, 3.08032, 2.20557, 3.08032, 2.20557, 2.20557, 1.61803, 3.53392, 1.61803, 2.20557, 2.67170, ...
It then appears that for n = 1,2,3,4,5,...,infinity we have the table:
Prime signature: b(Axxxxxx(n)) = Largest abs(eigenvalue):
p^0 : b(1) = 1.0000000000000000000000000000...
p : b(A000040(n)) = 1.6180339887498949025257388711...
p^2 : b(A001248(n)) = 2.0000000000000000000000000000...
p*q : b(A006881(n)) = 2.2055694304005917238953315973...
p^3 : b(A030078(n)) = 2.3247179572447480566665944934...
p^2*q : b(A054753(n)) = 2.6716998816571604358216518448...
p^4 : b(A030514(n)) = 2.6180339887498917939012699207...
p^3*q : b(A065036(n)) = 3.0803227214906021558249449299...
p*q*r : b(A007304(n)) = 2.9379558827528557962693867011...
p^5 : b(A050997(n)) = 2.8905508875432590620846440288...
p^2*q^2 : b(A085986(n)) = 3.2187765853016649941764626419...
p^4*q : b(A178739(n)) = 3.4534111136673804054453285061...
p^2*q*r : b(A085987(n)) = 3.5339198574905377192578725953...
p^6 : b(A030516(n)) = 3.1478990357047909043330946587...
p^3*q^2 : b(A143610(n)) = 3.7022736187975437971431347250...
p^5*q : b(A178740(n)) = 3.8016448153137023524550386355...
p^3*q*r : b(A189975(n)) = 4.0600260453688532535920785448...
p^7 : b(A092759(n)) = 3.3935083220984414431597997463...
p^4*q^2 : b(A189988(n)) = 4.1453038440113498808159420150...
p^2*q^2*r: b(A179643(n)) = 4.2413382309993874486053755390...
p^6*q : b(A189987(n)) = 4.1311805192254587026923218218...
p*q*r*s : b(A046386(n)) = 3.8825338629275134572083061357...
...
b(Axxxxxx(1)) in the sequences above, is given by A025487.
(End)
First column in the coefficients of the characteristic polynomials is the Möbius function A008683.
Row sums of coefficients start: 0, -1, 0, 0, 0, 0, 0, 0, 0, ...
Third diagonal is a signed version of A000096.
Most of the eigenvalues are equal to 1. The number of eigenvalues equal to 1 are given by A075795 for n>1.
The first three of the eigenvalues above can be calculated as nested radicals. The fourth eigenvalue 2.205569430400590... minus 1 = 1.205569430400590... is also a nested radical.

Examples

			{
{ 1},
{ 1, -1},
{-1, -1,  1},
{-1,  0,  2,  -1},
{ 0,  0,  2,  -3,  1},
{-1,  2,  1,  -5,  4,   -1},
{ 1, -3,  5,  -8,  9,   -5,   1},
{-1,  4, -4,  -5, 15,  -14,   6,  -1},
{ 0, -1,  6, -17, 29,  -31,  20,  -7,  1},
{ 0,  0,  2, -13, 36,  -55,  50, -27,  8, -1},
{ 1, -7, 23, -50, 84, -112, 112, -78, 35, -9, 1}
}
		

Crossrefs

Programs

  • Mathematica
    Clear[x, AA, nn, s]; Monitor[AA = Flatten[Table[A = Table[Table[If[Mod[n, k] == 0, 1, 0], {k, 1, nn}], {n, 1, nn}]; MatrixForm[A]; a = A[[1, nn]]; A[[1, nn]] = A[[nn, nn]]; A[[nn, nn]] = a; CoefficientList[CharacteristicPolynomial[A, x], x], {nn, 1, 10}]], nn]

A307341 Products of four primes, not all distinct.

Original entry on oeis.org

16, 24, 36, 40, 54, 56, 60, 81, 84, 88, 90, 100, 104, 126, 132, 135, 136, 140, 150, 152, 156, 184, 189, 196, 198, 204, 220, 225, 228, 232, 234, 248, 250, 260, 276, 294, 296, 297, 306, 308, 315, 328, 340, 342, 344, 348, 350, 351, 364, 372, 375, 376, 380, 414
Offset: 1

Views

Author

Kalle Siukola, Apr 02 2019

Keywords

Comments

Numbers with exactly four prime factors (counted with multiplicity) but fewer than four distinct prime factors.
Numbers n such that bigomega(n) = 4 and omega(n) < 4.

Crossrefs

Setwise difference of A014613 and A046386.
Union of A030514, A065036, A085986 and A085987.

Programs

  • PARI
    isok(n) = (bigomega(n) == 4) && (omega(n) < 4); \\ Michel Marcus, Apr 03 2019
  • Python
    import sympy
    def bigomega(n): return sympy.primeomega(n)
    def omega(n): return len(sympy.primefactors(n))
    print([n for n in range(1, 1000) if bigomega(n) == 4 and omega(n) < 4])
    

A343511 a(n) = 1 + Sum_{d|n, d < n} a(d)^2.

Original entry on oeis.org

1, 2, 2, 6, 2, 10, 2, 42, 6, 10, 2, 146, 2, 10, 10, 1806, 2, 146, 2, 146, 10, 10, 2, 23226, 6, 10, 42, 146, 2, 314, 2, 3263442, 10, 10, 10, 42814, 2, 10, 10, 23226, 2, 314, 2, 146, 146, 10, 2, 542731938, 6, 146, 10, 146, 2, 23226, 10, 23226, 10, 10, 2, 141578, 2, 10, 146, 10650056950806, 10
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 17 2021

Keywords

Comments

a(n) depends only on the prime signature of n (see formulas). - Bernard Schott, Apr 24 2021

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          1+add(a(d)^2, d=numtheory[divisors](n) minus {n})
        end:
    seq(a(n), n=1..65);  # Alois P. Heinz, Apr 17 2021
  • Mathematica
    a[n_] := a[n] = 1 + Sum[If[d < n, a[d]^2, 0], {d, Divisors[n]}]; Table[a[n], {n, 65}]
  • PARI
    lista(nn) = {my(va = vector(nn)); for (n=1, nn, va[n] = 1 + sumdiv(n, d, if (dMichel Marcus, Apr 18 2021
  • Python
    from functools import lru_cache
    from sympy import divisors
    @lru_cache(maxsize=None)
    def A343511(n): return 1+sum(A343511(d)**2 for d in divisors(n) if d < n) # Chai Wah Wu, Apr 17 2021
    

Formula

G.f.: x / (1 - x) + Sum_{n>=1} a(n)^2 * x^(2*n) / (1 - x^n).
a(p^k) = A007018(k) for p prime.
From Bernard Schott, Apr 24 2021: (Start)
a(A006881(n)) = 10 for signature [1, 1].
a(A054753(n)) = 146 for signature [2, 1].
a(A007304(n)) = 314 for signature [1, 1, 1].
a(A065036(n)) = 23226 for signature [3, 1].
a(A085986(n)) = 42814 for signature [2, 2].
a(A085987(n)) = 141578 for signature [2, 1, 1]. (End)

A359597 Indices k such that A358777(k) is odd, and k is not an odd semiprime.

Original entry on oeis.org

1, 135, 189, 297, 315, 351, 375, 459, 495, 513, 525, 585, 621, 693, 735, 765, 783, 819, 825, 837, 855, 875, 975, 999, 1029, 1035, 1071, 1107, 1155, 1161, 1197, 1269, 1275, 1287, 1305, 1365, 1375, 1395, 1425, 1431, 1449, 1593, 1617, 1625, 1647, 1665, 1683, 1715, 1725, 1785, 1809, 1815, 1827, 1845, 1881
Offset: 1

Views

Author

Antti Karttunen, Jan 09 2023

Keywords

Comments

2025 = 3^4 * 5^2, 30375 = 3^5 * 5^3 and 455625 == 3^6 * 5^4 are the first terms with respectively 6, 8 and 10 prime factors (with multiplicity).

Crossrefs

Setwise difference A359596 \ A046315.
Odd terms of A065036 form a subset.

Programs

A375076 Numbers whose prime factorization exponents include at least one 1, at least one 3 and no other exponents.

Original entry on oeis.org

24, 40, 54, 56, 88, 104, 120, 135, 136, 152, 168, 184, 189, 232, 248, 250, 264, 270, 280, 296, 297, 312, 328, 344, 351, 375, 376, 378, 408, 424, 440, 456, 459, 472, 488, 513, 520, 536, 552, 568, 584, 594, 616, 621, 632, 664, 680, 686, 696, 702, 712, 728, 744, 750
Offset: 1

Views

Author

Amiram Eldar, Jul 29 2024

Keywords

Comments

First differs from its subsequence A360793 at n = 79: a(79) = 1080 = 2^3 * 3^3 * 5 is not a term of A360793.
Numbers k such that the set of distinct prime factorization exponents of k (row k of A136568) is {1, 3}.
The asymptotic density of this sequence is ((zeta(6)/zeta(3)) * Product_{p prime} (1 + 2/p^3 - 1/p^4 + 1/p^5) - 1)/zeta(2) = 0.076359822332835689478... .

Crossrefs

Equals A336591 \ (A005117 UNION A062838).
Subsequences: A065036, A360793.

Programs

  • Mathematica
    Select[Range[750], Union[FactorInteger[#][[;; , 2]]] == {1, 3} &]
  • PARI
    is(k) = Set(factor(k)[,2]) == [1, 3];

A375934 Numbers whose prime factorization has a second-largest exponent that equals 1.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 198, 204
Offset: 1

Views

Author

Amiram Eldar, Sep 03 2024

Keywords

Comments

First differs from A332785 at n = 112: A332785(112) = 360 = 2^3 * 3^2 * 5 is not a term of this sequence.
First differs from A317616 at n = 38: A317616(38) = 144 = 2*4 * 3^2 is not a term of this sequence.
Numbers k such that A375933(k) = 1.
Numbers of the form s1 * s2^e, where s1 and s2 are coprime squarefree numbers that are both larger than 1, and e >= 2.
The asymptotic density of this sequence is Sum_{e>=2} d(e) = 0.36113984820338109927..., where d(e) = Product_{p prime} (1 - 1/p^2 + 1/p^e - 1/p^(e+1)) - Product_{p prime} (1 - 1/p^(e+1)) is the asymptotic density of terms k with A051903(k) = e >= 2.

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Max[0, Max[Select[e, # < Max[e] &]]] == 1]; Select[Range[300], q]
  • PARI
    is(n) = if(n == 1, 0, my(e = factor(n)[,2]); e = select(x -> x < vecmax(e), e); if(#e == 0, 0, vecmax(e) == 1));

Formula

A051904(a(n)) = 1.
A051903(a(n)) >= 2.
A001221(a(n)) = 2.

A377844 Numbers that have a single odd exponent larger than 1 in their prime factorization.

Original entry on oeis.org

8, 24, 27, 32, 40, 54, 56, 72, 88, 96, 104, 108, 120, 125, 128, 135, 136, 152, 160, 168, 184, 189, 200, 224, 232, 243, 248, 250, 264, 270, 280, 288, 296, 297, 312, 328, 343, 344, 351, 352, 360, 375, 376, 378, 384, 392, 408, 416, 424, 432, 440, 456, 459, 472, 480, 486, 488, 500
Offset: 1

Views

Author

Amiram Eldar, Nov 09 2024

Keywords

Comments

First differs from A295661, A325990 and A376142 at n = 24: A295661(24) = A325990(24) = A376142(24) = 216 = 2^3 * 3^3 is not a term of this sequence.
Differs from A060476 by having the terms 432, 648, 1728, ..., and not having the terms 1, 216, 256, 768, 864, ... .
The asymptotic density of this sequence is Product_{p prime} (1 - 1/(p^2*(p+1))) * Sum_{p prime} (1/(p^3+p^2-1)) = 0.11498368544519741081... .

Crossrefs

Subsequence of A295661.
Subsequences: A065036, A143610, A163569.

Programs

  • Mathematica
    q[n_] := Count[FactorInteger[n][[;; , 2]], _?(# > 1 && OddQ[#] &)] == 1; Select[Range[500], q]
  • PARI
    is(k) = #select(x -> x>1 && x%2, factor(k)[, 2]) == 1;

A297401 Non-sphenic numbers with exactly 8 divisors.

Original entry on oeis.org

24, 40, 54, 56, 88, 104, 128, 135, 136, 152, 184, 189, 232, 248, 250, 296, 297, 328, 344, 351, 375, 376, 424, 459, 472, 488, 513, 536, 568, 584, 621, 632, 664, 686, 712, 776, 783, 808, 824, 837, 856, 872, 875, 904, 999, 1016, 1029, 1048, 1096, 1107, 1112, 1161, 1192
Offset: 1

Views

Author

G. L. Honaker, Jr., Dec 29 2017

Keywords

Comments

These are the numbers of the form p^3*q (with primes p and q distinct) or p^7. Thus it is the union of A065036 and A092759, and this can be used for direct enumeration. - Alex Meiburg, Dec 31 2017

Crossrefs

Subsequence of A030626.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    P:= select(isprime, [2,seq(i,i=3..N)]):
    R:= NULL:
    for p in P do
      if p^7 <= N then R:= R, p^7 fi;
      if p^3 > N then break fi;
      for q in P while p^3*q <= N do if q <> p then R:= R, p^3*q fi od:
    od:
    sort([R]); # Robert Israel, Dec 31 2017
  • Mathematica
    Select[Range@ 1200, And[DivisorSigma[0, #] == 8, Nand[PrimeNu[#] == 3, PrimeOmega[#] == 3]] &] (* Michael De Vlieger, Dec 29 2017 *)
  • PARI
    isok(n) = !((bigomega(n)==3) && (omega(n)==3)) && (numdiv(n) == 8); \\ Michel Marcus, Dec 29 2017
    
  • Python
    from sympy import primepi, primerange, integer_nthroot
    def A297401(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum(primepi(x//p**3) for p in primerange(integer_nthroot(x,3)[0]+1))+primepi(integer_nthroot(x,4)[0])-primepi(integer_nthroot(x,7)[0]))
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

Equals {A030626} \ {A007304}. - Omar E. Pol, Dec 30 2017

Extensions

More terms from Michel Marcus, Dec 29 2017
Previous Showing 31-40 of 47 results. Next