cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A072437 Numbers with no prime factors of form 4*k+3.

Original entry on oeis.org

1, 2, 4, 5, 8, 10, 13, 16, 17, 20, 25, 26, 29, 32, 34, 37, 40, 41, 50, 52, 53, 58, 61, 64, 65, 68, 73, 74, 80, 82, 85, 89, 97, 100, 101, 104, 106, 109, 113, 116, 122, 125, 128, 130, 136, 137, 145, 146, 148, 149, 157, 160, 164, 169, 170, 173, 178, 181, 185, 193, 194
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 17 2002

Keywords

Comments

m is a term iff A072436(m) = m.
These numbers have density zero (Pollack).

Crossrefs

Cf. A004144, A002144, A002145, A004613 (odd terms).
A097706(a(n)) = 1.
Cf. A187811 (complement).

Programs

Formula

n>0 such that A001842(n)=0. - Benoit Cloitre, Apr 24 2003
A005091(a(n)) = 0. - Reinhard Zumkeller, Jan 07 2013
A065339(a(n)) = 0 . - R. J. Mathar, Jan 28 2025

A072202 Same numbers of prime factors of forms 4*k+1 and 4*k+3, counted with multiplicity.

Original entry on oeis.org

1, 2, 4, 8, 15, 16, 30, 32, 35, 39, 51, 55, 60, 64, 70, 78, 87, 91, 95, 102, 110, 111, 115, 119, 120, 123, 128, 140, 143, 155, 156, 159, 174, 182, 183, 187, 190, 203, 204, 215, 219, 220, 222, 225, 230, 235, 238, 240, 246, 247, 256, 259, 267, 280, 286, 287, 291
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 03 2002

Keywords

Comments

Equivalently, numbers n such that A083025(n) = A065339(n), indices of zeros in A079635.
Closed under multiplication.
Closed with respect to permutation A267099. - Antti Karttunen, Feb 03 2016

Examples

			825 = 3*5*5*11 = [(4*0+3)*(4*2+3)]*[(4*1+1)*(4*1+1)], therefore 825 is a term.
		

Crossrefs

Primitive elements are {2} U A080774. - Franklin T. Adams-Watters, Dec 16 2011.
Subsequence of A078613 and of A268381.

Programs

  • Haskell
    a072202 n = a072202_list !! (n-1)
    a072202_list = [x | x <- [1..], a083025 x == a065339 x]
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Mathematica
    f[n_]:=Plus@@Last/@Select[If[==1,{},FactorInteger[n]],Mod[#[[1]],4]==1&]; Table[f[n],{n,100}] (* Ray Chandler, Dec 18 2011 *)
  • PARI
    isok(n) = {my(f = factor(n)); sum(k=1, #f~, ((f[k,1] % 4)==1)*f[k,2]) == sum(k=1, #f~, ((f[k,1] % 4)==3)*f[k,2]);} \\ Michel Marcus, Feb 05 2016
  • Scheme
    (define A072202 (ZERO-POS 1 1 A079635)) ;; [requires also my IntSeq-library] - Antti Karttunen, Feb 03 2016
    

A014709 The regular paper-folding (or dragon curve) sequence. Alphabet {1,2}.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1
Offset: 0

Views

Author

Keywords

Comments

Over the alphabet {a,b} this is aabaabbaaabbabbaaabaabbbaabbabbaaaba...
With offset 1, completely multiplicative modulo 3. - Peter Munn, Jun 20 2022

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, pp. 155, 182.
  • G. Melançon, Factorizing infinite words using Maple, MapleTech journal, vol. 4, no. 1, 1997, pp. 34-42, esp. p. 36.

Crossrefs

See A014577 for more references and more terms.
The following are all essentially the same sequence: A014577, A014707, A014709, A014710, A034947, A038189, A082410. - N. J. A. Sloane, Jul 27 2012
Cf. A065339.

Programs

  • Mathematica
    (3 - JacobiSymbol[-1, Range[100]])/2 (* Paolo Xausa, May 26 2024 *)
  • PARI
    a(n)=if(n%2==0, 1+bitand(1,n\2), a(n\2) );
    for(n=0,122,print1(a(n),", "))

Formula

Set a=1, b=2, S(0)=a, S(n+1) = S(n)aF(S(n)), where F(x) reverses x and then interchanges a and b; sequence is limit S(infinity).
a(4n) = 1, a(4n+2) = 2, a(2n+1) = a(n).
a(n) = (3-jacobi(-1,n+1))/2 (cf. A034947). - N. J. A. Sloane, Jul 27 2012 [index adjusted by Peter Munn, Jun 22 2022]
a(n) = 1 + A065339(n+1) mod 2. - Peter Munn, Jun 20 2022

A079635 Sum of (2 - p mod 4) for all prime factors p of n (with repetition).

Original entry on oeis.org

0, 0, -1, 0, 1, -1, -1, 0, -2, 1, -1, -1, 1, -1, 0, 0, 1, -2, -1, 1, -2, -1, -1, -1, 2, 1, -3, -1, 1, 0, -1, 0, -2, 1, 0, -2, 1, -1, 0, 1, 1, -2, -1, -1, -1, -1, -1, -1, -2, 2, 0, 1, 1, -3, 0, -1, -2, 1, -1, 0, 1, -1, -3, 0, 2, -2, -1, 1, -2, 0, -1, -2, 1, 1, 1, -1, -2, 0, -1, 1, -4, 1, -1, -2, 2, -1, 0, -1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 30 2003

Keywords

Comments

a(n) = {number of primes of the form 4k+1 dividing n} minus {number of primes of the form 4k+3 dividing n}, both counted with multiplicity. - Antti Karttunen, Feb 03 2016, after the formula.

Examples

			a(55) = a(5*11) = (2 - 5 mod 4)+(2 - 11 mod 4) = (2-1)+(2-3) = (1)+(-1) = 0.
		

Crossrefs

Cf. A072202 (indices of zeros), A268379 (of strictly positive terms), A268380 (of negative terms), A268381 (of nonnegative terms).
Cf. A005094 (difference when counting only distinct primes).

Programs

  • Haskell
    a079635 1 = 0
    a079635 n = sum $ map ((2 - ) . (`mod` 4)) $ a027746_row n
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Maple
    f:= proc(n) local t;
    add(t[2]*(2-(t[1] mod 4)), t=ifactors(n)[2])
    end proc:
    map(f, [$1..100]); # Robert Israel, Feb 05 2016
  • Mathematica
    f[n_]:=Plus@@((2-Mod[#[[1]],4])*#[[2]]&/@If[n==1,{},FactorInteger[n]]); Table[f[n],{n,100}] (* Ray Chandler, Dec 20 2011 *)
  • Scheme
    (define (A079635 n) (- (A083025 n) (A065339 n))) ;; Antti Karttunen, Feb 03 2016

Formula

a(n) = A083025(n) - A065339(n).
Other identities. For all n >= 1:
a(A267099(n)) = -a(n). - Antti Karttunen, Feb 03 2016
Totally additive with a(2) = 0, a(p) = 1 if p == 1 (mod 4), and a(p) = -1 if p == 3 (mod 4). - Amiram Eldar, Jun 17 2024

Extensions

Edited by Ray Chandler, Dec 20 2011

A249344 A(n,k) = exponent of the largest power of n-th prime which divides k, square array read by antidiagonals.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Oct 28 2014

Keywords

Comments

Square array A(n,k), where n = row, k = column, read by antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ... (transpose of array A060175).
A(n,k) is the (p_n)-adic valuation of k, where p_n is the n-th prime, A000040(n).
Each row is effectively a ruler function, s, with s(1) = 0. - Peter Munn, Apr 30 2022

Examples

			The top-left corner of the array:
  0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, ...
  0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, ...
  0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, ...
  0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, ...
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, ...
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, ...
  ...
A(1,8) = 3, because 2^3 is the largest power of 2 (= p_1 = A000040(1)) that divides 8.
a(2,9) = 2, because 3^2 is the largest power of 3 (= p_2) that divides 9.
a(3,15) = 1, because 5^1 is the largest power of 5 (= p_3) that divides 15.
		

Crossrefs

Transpose: A060175.
Row 1: A007814.
Row 2: A007949.
Row 3: A112765.
Row 4: A214411.
Completely additive sequences where more than one prime is mapped to 1, all other primes to 0: A065339, A083025, A087436, A169611.
Ruler functions, s, with s(1) = 0 that are not rows here: A122840, A122841, A235127, A244413.

Programs

  • Mathematica
    A[n_, k_] := IntegerExponent[k, Prime[n]]; Table[A[k, n - k + 1], {n, 1, 15}, {k, 1, n}] // Flatten (* Amiram Eldar, Oct 01 2023 *)
  • PARI
    a(n, k) = valuation(k, prime(n)); \\ Michel Marcus, Jun 24 2017
  • Python
    from sympy import prime
    def a(n, k):
        p=prime(n)
        i=z=0
        while p**i<=k:
            if k%(p**i)==0: z=i
            i+=1
        return z
    for n in range(1, 10): print([a(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Jun 24 2017
    
  • Scheme
    (define (A249344 n) (A249344bi (A002260 n) (A004736 n)))
    (define (A249344bi row col) (let ((p (A000040 row))) (let loop ((n col) (i 0)) (cond ((not (zero? (modulo n p))) i) (else (loop (/ n p) (+ i 1)))))))
    

Formula

Row n, as a sequence, is completely additive with A(n, prime(n)) = 1, A(n, prime(m)) = 0 for m <> n. - Peter Munn, Apr 30 2022
Sum_{k=1..m} A(n,k) ~ (1/(prime(n)-1)) * m. - Amiram Eldar, Oct 01 2023

A260728 Bitwise-OR of the exponents of all 4k+3 primes in the prime factorization of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 1, 1, 0, 0, 2, 1, 0, 1, 1, 1, 1, 0, 0, 3, 1, 0, 1, 1, 0, 1, 0, 1, 2, 0, 1, 1, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 0, 1, 0, 0, 3, 1, 1, 1, 0, 1, 1, 0, 1, 3, 0, 0, 1, 1, 0, 1, 1, 1, 2, 0, 0, 1, 1, 1, 1, 1, 0, 4, 0, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 0, 2, 3, 0, 0, 1, 1, 0, 1, 0, 1, 3, 0, 1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Aug 12 2015

Keywords

Comments

A001481 (numbers that are the sum of 2 squares) gives the positions of even terms in this sequence, while its complement A022544 (numbers that are not the sum of 2 squares) gives the positions of odd terms.
If instead of bitwise-oring (A003986) we added in ordinary way the exponents of 4k+3 primes together, we would get the sequence A065339. For the positions where these two sequences differ see A260730.

Examples

			For n = 21 = 3^1 * 7^1 we compute A003986(1,1) = 1, thus a(21) = 1.
For n = 63 = 3^2 * 7^1 we compute A003986(2,1) = A003986(1,2) = 3, thus a(63) = 3.
		

Crossrefs

Cf. also A267113, A267116, A267099.
Differs from A065339 for the first time at n=21, where a(21) = 1, while A065339(21)=2.

Programs

Formula

If n < 3, a(n) = 0; thereafter, for any even n: a(n) = a(n/2), for any n with its smallest prime factor (A020639) of the form 4k+1: a(n) = a(A032742(n)), otherwise [when A020639(n) is of the form 4k+3] a(n) = A003986(A067029(n),a(A028234(n))).
Other identities. For all n >= 0:
A229062(n) = 1 - A000035(a(n)). [Reduced modulo 2 and complemented, the sequence gives the characteristic function of A001481.]
a(n) = a(A097706(n)). [The result depends only on the prime factors of the form 4k+3.]
a(n) = A267116(A097706(n)).
a(n) = A267113(A267099(n)).

A286363 Least number with the same prime signature as {the largest divisor of n with only prime factors of the form 4k+3} has: a(n) = A046523(A097706(n)).

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 1, 4, 1, 2, 2, 1, 2, 2, 1, 1, 4, 2, 1, 6, 2, 2, 2, 1, 1, 8, 2, 1, 2, 2, 1, 6, 1, 2, 4, 1, 2, 2, 1, 1, 6, 2, 2, 4, 2, 2, 2, 4, 1, 2, 1, 1, 8, 2, 2, 6, 1, 2, 2, 1, 2, 12, 1, 1, 6, 2, 1, 6, 2, 2, 4, 1, 1, 2, 2, 6, 2, 2, 1, 16, 1, 2, 6, 1, 2, 2, 2, 1, 4, 2, 2, 6, 2, 2, 2, 1, 4, 12, 1, 1, 2, 2, 1, 6, 1, 2, 8, 1, 2, 2, 2, 1, 6, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Antti Karttunen, May 08 2017

Keywords

Crossrefs

Programs

  • Python
    from sympy import factorint
    from operator import mul
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a072436(n):
        f = factorint(n)
        return 1 if n == 1 else reduce(mul, [1 if i%4==3 else i**f[i] for i in f])
    def a(n): return a046523(n/a072436(n)) # Indranil Ghosh, May 09 2017
  • Scheme
    (define (A286363 n) (A046523 (A097706 n)))
    

Formula

a(n) = A046523(A097706(n)).
a(n) = A286361(A267099(n)).

A373591 Number of primes congruent to 1 modulo 3 dividing n (with multiplicity).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 2, 0, 1, 0, 1, 0, 1, 2, 0, 0, 0, 0, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jun 13 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[Mod[p, 3] == 1, e, 0]; f[3, e_] := 0; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jun 17 2024 *)
  • PARI
    A373591(n) = sum(i=1, #n=factor(n)~, (1==n[1, i]%3)*n[2, i]); \\ After code in A083025

Formula

a(n) = A001222(A248909(n)).
a(n) = A001222(n) - (A007949(n)+A373592(n)).
Totally additive with a(3) = 0, a(p) = 1 if p == 1 (mod 3), and a(p) = 0 if p == 2 (mod 3). - Amiram Eldar, Jun 17 2024

A286473 Compound filter (for counting primes of form 4k+1, 4k+2 and 4k+3): a(n) = 4*A032742(n) + (A020639(n) mod 4), a(1) = 1.

Original entry on oeis.org

1, 6, 7, 10, 5, 14, 7, 18, 15, 22, 7, 26, 5, 30, 23, 34, 5, 38, 7, 42, 31, 46, 7, 50, 21, 54, 39, 58, 5, 62, 7, 66, 47, 70, 29, 74, 5, 78, 55, 82, 5, 86, 7, 90, 63, 94, 7, 98, 31, 102, 71, 106, 5, 110, 45, 114, 79, 118, 7, 122, 5, 126, 87, 130, 53, 134, 7, 138, 95, 142, 7, 146, 5, 150, 103, 154, 47, 158, 7, 162, 111, 166, 7, 170, 69, 174, 119, 178, 5, 182, 55
Offset: 1

Views

Author

Antti Karttunen, May 11 2017

Keywords

Comments

For all i, j: a(i) = a(j) => A079635(i) = A079635(j). This follows because A079635(n) can be computed by recursively invoking a(n), without needing any other information.

Crossrefs

Cf. A001511, A007814, A065339, A079635, A083025 (some of the matched sequences).

Programs

  • Mathematica
    With[{k = 4}, Table[Function[{p, d}, k d + Mod[p, k] - k Boole[n == 1]] @@ {#, n/#} &@ FactorInteger[n][[1, 1]], {n, 91}]] (* Michael De Vlieger, May 12 2017 *)
  • Python
    from sympy import divisors, primefactors
    def a(n): return 1 if n==1 else 4*divisors(n)[-2] + (min(primefactors(n))%4) # Indranil Ghosh, May 12 2017
  • Scheme
    (define (A286473 n) (if (= 1 n) n (+ (* 4 (A032742 n)) (modulo (A020639 n) 4))))
    

Formula

a(1) = 1, for n > 1, a(n) = 4*A032742(n) + (A020639(n) mod 4).

A373592 Number of primes congruent to 2 modulo 3 dividing n (with multiplicity).

Original entry on oeis.org

0, 1, 0, 2, 1, 1, 0, 3, 0, 2, 1, 2, 0, 1, 1, 4, 1, 1, 0, 3, 0, 2, 1, 3, 2, 1, 0, 2, 1, 2, 0, 5, 1, 2, 1, 2, 0, 1, 0, 4, 1, 1, 0, 3, 1, 2, 1, 4, 0, 3, 1, 2, 1, 1, 2, 3, 0, 2, 1, 3, 0, 1, 0, 6, 1, 2, 0, 3, 1, 2, 1, 3, 0, 1, 2, 2, 1, 1, 0, 5, 0, 2, 1, 2, 2, 1, 1, 4, 1, 2, 0, 3, 0, 2, 1, 5, 0, 1, 1, 4, 1, 2, 0, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Jun 13 2024

Keywords

Crossrefs

Cf. also A065339, A083025.
Differs from A257991 for the first time at n=29, where a(29) = 1, while A257991(29) = 0.

Programs

  • Mathematica
    f[p_, e_] := If[Mod[p, 3] == 2, e, 0]; f[3, e_] := 0; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jun 17 2024 *)
  • PARI
    A373592(n) = sum(i=1, #n=factor(n)~, (2==n[1, i]%3)*n[2, i]); \\ After code in A083025

Formula

a(n) = A001222(A343430(n)).
a(n) = A001222(n) - (A007949(n)+A373591(n)).
Totally additive with a(3) = 0, a(p) = 1 if p == 2 (mod 3), and a(p) = 0 if p == 1 (mod 3). - Amiram Eldar, Jun 17 2024
Previous Showing 11-20 of 29 results. Next