A004144 Nonhypotenuse numbers (indices of positive squares that are not the sums of 2 distinct nonzero squares).
1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 16, 18, 19, 21, 22, 23, 24, 27, 28, 31, 32, 33, 36, 38, 42, 43, 44, 46, 47, 48, 49, 54, 56, 57, 59, 62, 63, 64, 66, 67, 69, 71, 72, 76, 77, 79, 81, 83, 84, 86, 88, 92, 93, 94, 96, 98, 99, 103, 107, 108, 112, 114, 118, 121, 124, 126, 127
Offset: 1
Keywords
References
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 98-104.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Evan M. Bailey, Table of n, a(n) for n = 1..20000 (Terms 1..1000 from T. D. Noe)
- Evan M. Bailey, a004144.cpp.
- Steven R. Finch, Landau-Ramanujan Constant [Broken link]
- Steven R. Finch, Landau-Ramanujan Constant [From the Wayback machine]
- Daniel Shanks, Non-hypotenuse numbers, Fib. Quart., Vol. 13, No. 4 (1975), pp. 319-321.
- Eric Weisstein's World of Mathematics, Pythagorean Triple.
- Index entries for sequences related to sums of squares.
Crossrefs
Programs
-
Haskell
import Data.List (elemIndices) a004144 n = a004144_list !! (n-1) a004144_list = map (+ 1) $ elemIndices 0 a005089_list -- Reinhard Zumkeller, Jan 07 2013
-
Mathematica
fQ[n_] := If[n > 1, First@ Union@ Mod[ First@# & /@ FactorInteger@ n, 4] != 1, True]; Select[ Range@ 127, fQ] A004144 = Select[Range[127],Length@Reduce[s^2 + t^2 == s # && s > t > 0, Integers] == 0 &] (* Gerry Martens, Jun 09 2020 *)
-
PARI
is(n)=n==1||vecmin(factor(n)[,1]%4)>1 \\ Charles R Greathouse IV, Apr 16 2012
-
PARI
list(lim)=my(v=List(),u=vectorsmall(lim\=1)); forprimestep(p=5,lim,4, forstep(n=p,lim,p, u[n]=1)); for(i=1,lim, if(u[i]==0, listput(v,i))); u=0; Vec(v) \\ Charles R Greathouse IV, Jan 13 2022
Formula
A005089(a(n)) = 0. - Reinhard Zumkeller, Jan 07 2013
The number of terms below x is ~ (A * x / sqrt(log(x))) * (1 + C/log(x) + O(1/log(x)^2)), where A = A244659 and C = A244662 (Shanks, 1975). - Amiram Eldar, Jan 29 2022
Extensions
More terms from Reinhard Zumkeller, Jun 17 2002
Name clarified by Evan M. Bailey, Sep 17 2019
Comments