cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A213007 Decimal expansion of Brun's quadruple primes constant.

Original entry on oeis.org

8, 7, 0, 5, 8, 8, 3, 8
Offset: 0

Views

Author

Stanislav Sykora, Jun 01 2012

Keywords

Comments

Infinite sum of the reciprocals of p, p+2, p+6, and p+8, where p ranges over all elements of A007530.
The 9th digit is probably 0.

Examples

			0.8705883800[+-5]
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.14, p. 133.

Crossrefs

Formula

Sum_{n >= 1} (1/c(n) + 1/(c(n)+2) + 1/(c(n)+6) + 1/(c(n)+8)), where c(n) = A007530(n).

A284203 Number of twin prime (A001097) divisors of n.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 0, 2, 1, 2, 1, 0, 1, 2, 1, 1, 2, 1, 1, 2, 0, 0, 1, 1, 1, 2, 1, 0, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 0, 2, 2, 0, 1, 1, 2, 1, 1, 1, 0, 2, 1, 2, 2, 0, 1, 1, 1, 0, 2, 2, 1, 2, 1, 0, 2, 2, 0, 2, 0, 2, 1, 0, 1, 2, 1, 1, 2, 1, 1, 3, 0, 1, 1, 1, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 22 2017

Keywords

Examples

			--------------------------------------------
| n | divisors of n | twin prime    | a(n) |
|   |               | divisors of n |      |
|------------------------------------------
| 1 | {1}           |      {-}      |  0   |
| 2 | {1, 2}        |      {-}      |  0   |
| 3 | {1, 3}        |      {3}      |  1   |
| 4 | {1, 2, 4}     |      {-}      |  0   |
| 5 | {1, 5}        |      {5}      |  1   |
| 6 | {1, 2, 3, 6}  |      {3}      |  1   |
| 7 | {1, 7}        |      {7}      |  1   |
| 8 | {1, 2, 4, 8}  |      {-}      |  0   |
| 9 | {1, 3, 9}     |      {3}      |  1   |
--------------------------------------------
		

Crossrefs

Cf. A048599 (positions of records).

Programs

  • Mathematica
    nmax = 110; Rest[CoefficientList[Series[Sum[Boole[PrimeQ[k] && (PrimeQ[k - 2] || PrimeQ[k + 2])] x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Length[Select[Divisors[n], PrimeQ[#] && (PrimeQ[# - 2] || PrimeQ[# + 2]) &]], {n, 110}]
  • PARI
    concat([0, 0],Vec(sum(k=1, 110, (isprime(k) && (isprime(k - 2) || isprime(k + 2)))* x^k/(1 - x^k)) + O(x^111))) \\ Indranil Ghosh, Mar 22 2017
    
  • PARI
    a(n) = sumdiv(n, d, isprime(d) && (isprime(d-2) || isprime(d+2))); \\ Amiram Eldar, Jun 03 2024
    
  • Python
    from sympy import isprime, divisors
    print([len([i for i in divisors(n) if isprime(i) and (isprime(i - 2) or isprime(i + 2))]) for n in range(1, 111)]) # Indranil Ghosh, Mar 22 2017

Formula

G.f.: Sum_{k>=1} x^A001097(k)/(1 - x^A001097(k)).
a(A062729(n)) = 0. - Ilya Gutkovskiy, Apr 02 2017
From Amiram Eldar, Jun 03 2024: (Start)
a(A048599(n)) = n.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A065421 - 1/5 = 1.7021605... . (End)
Additive with a(p^e) = 1 if p is in A001097, and 0 otherwise. - Amiram Eldar, May 15 2025
a(A037074(n)) = 2. - Michel Marcus, May 15 2025

A357059 Decimal expansion of sum of squares of reciprocals of primes whose distance to the next prime is equal to 4, Sum_{j>=1} 1/A029710(j)^2.

Original entry on oeis.org

0, 3, 1, 3, 2, 1, 6, 2, 0, 6, 4, 6
Offset: 0

Views

Author

Artur Jasinski, Sep 10 2022

Keywords

Comments

Convergence table:
k A029710(k) Sum_{j=1..k} 1/A029710(j)^2
10000000 3285441223 0.031321620645456519799598611681
20000000 7067090263 0.031321620645890982910821292996
30000000 11044597393 0.031321620646019474620358985896
40000000 15153534937 0.031321620646079307404248696076
50000000 19360462153 0.031321620646113421819579063642
60000000 23647877233 0.031321620646135276227114122713
70000000 28000392817 0.031321620646150384406674037099

Examples

			0.031321620646...
		

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[g1[2 n] = 0, {n, 1, 1000}]; Do[g2[2 n] = 0, {n, 1, 1000}]; Do[g3[2 n] = 0, {n, 1, 1000}]; Do[g4[2 n] = 0, {n, 1, 1000}]; Do[g[2 n] = 0, {n, 1, 1000}];
    w1 = 3; n = 3; Monitor[While[n < 10^10, w2 = NextPrime[w1]; kk = w2 - w1;
      If[kk < 2000, g[kk] = g[kk] + 1; g1[kk] = g1[kk] + N[1/w1, 1000];g2[kk] = g2[kk] + N[1/w1^2, 1000];g3[kk] = g3[kk] + N[1/w1^3, 1000];g4[kk] = g4[kk] + N[1/w1^4, 1000];
    If[IntegerQ[g[kk]/1000000], Print[{n, w1, kk, g[kk]}];If[kk == 4,AppendTo[aa, {n, w1, kk, g[kk], g1[kk], g2[kk], g3[kk], g4[kk]}]]]];w1 = w2; n++], n];aa

A038124 Beatty sequence for Brun's constant.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 98, 100, 102
Offset: 1

Views

Author

Keywords

Formula

a(n)=floor(n*A065421).

Extensions

Updated reference to Brun's constant - R. J. Mathar, Oct 10 2010

A074042 Numerator of Sum_{k=1..n} 1/A077800(k), denominator=A074043.

Original entry on oeis.org

1, 8, 11, 92, 1117, 15676, 281507, 5603888, 167362597, 5328886012, 222844337147, 9761066934176, 583589647901149, 36052483750271224, 2587390775195626139, 190843701043052923832, 19418598540473717052037
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 13 2002

Keywords

Comments

a(n)/A074043(n) -> Brun's constant (A065421).

Extensions

Definition corrected by Max Alekseyev, May 10 2009

A074043 Denominator of Sum_{k=1..n} 1/A077800(k), numerator=A074042.

Original entry on oeis.org

3, 15, 15, 105, 1155, 15015, 255255, 4849845, 140645505, 4360010655, 178760436855, 7686698784765, 453515228301135, 27664428926369235, 1964174453772215685, 143384735125371745005, 14481858247662546245505
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 13 2002

Keywords

Comments

For n>2, a(n) = A048599(n-1).
A074042(n)/a(n) -> Brun's constant (A065421).

Crossrefs

Essentially the same as A048599.

Extensions

Edited by Max Alekseyev, May 10 2009

A241560 Decimal expansion of the sum of the reciprocals of the averages of the twin prime pairs.

Original entry on oeis.org

9, 2, 8, 8, 3, 5, 8, 2, 7, 1, 3
Offset: 0

Views

Author

Omar E. Pol, May 07 2014

Keywords

Comments

This constant is due to JJGJJG, see link section.
Denominators are in A014574.

Examples

			0.92883582713... = Sum_{k>=1} 1/A014574(k) = 1/4 + 1/6 + 1/12 + 1/18 + 1/30 + 1/42 + ...
		

Crossrefs

A277774 Decimal expansion of the prime triples constant, also known as Brun's constant B_{3a} = Sum (1/p + 1/(p+2) + 1/(p+6)) as p runs through the initial members of prime triples A022004.

Original entry on oeis.org

1, 0, 9, 7, 8, 5, 1, 0, 3, 9, 6, 7, 9
Offset: 1

Views

Author

Martin Renner, Oct 29 2016

Keywords

Examples

			1.097851039679...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.14, p. 133.

Crossrefs

Extensions

Offset corrected by Rick L. Shepherd, Nov 03 2016

A277775 Decimal expansion of the prime triples constant, also known as Brun's constant B_{3b} = Sum (1/p + 1/(p+4) + 1/(p+6)) as p runs through the initial members of prime triples A022005.

Original entry on oeis.org

8, 3, 7, 1, 1, 3, 2, 1, 2, 4, 1, 1
Offset: 0

Views

Author

Martin Renner, Oct 29 2016

Keywords

Examples

			0.837113212411...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.14, p. 133.

Crossrefs

Extensions

Offset corrected by Rick L. Shepherd, Nov 03 2016

A331369 Decimal expansion of Sum_{(p1, p2) is twin prime pair} 1/p1 + 1/p2 - log(p2/p1).

Original entry on oeis.org

0, 2, 9, 9, 8, 1, 7, 1, 0, 8, 3, 8, 9, 0, 6, 2, 6, 9, 6, 8, 2, 6
Offset: 0

Views

Author

Dimitris Valianatos, May 03 2020

Keywords

Comments

Let (p_k, p_(k+1)) twin prime pair. Then log(p_(k+1)/p_k) < 1/p_k + 1/p_(k+1).
Lim_{k -> oo} 1/p_k + 1/p_(k+1) - log(p_(k+1)/p_k) = 0.
This constant is analogous to Euler-Mascheroni constant for twin primes.

Examples

			0.0299817108389062696826...
		

Crossrefs

Programs

  • PARI
    p = 3; st = 0.0; forprime(n = 5, 1e11, if(n - p == 2, st += 1/p + 1/n - log(n/p)); p = n); print(st)

Formula

Equals Sum_{k >= 1} 1/A001359(k) + 1/A006512(k) - log(A006512(k)/A001359(k)).
Previous Showing 11-20 of 26 results. Next