cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 89 results. Next

A260423 a(1) = 1, a(prime(n)) = A206074(a(n)), a(composite(n)) = A205783(1+a(n)), where A206074 and A205783 give binary codes for polynomials with coefficients 0 or 1 that are irreducible [resp. reducible] over Q.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 25, 32, 29, 33, 34, 35, 36, 38, 31, 40, 42, 44, 37, 46, 41, 39, 49, 45, 43, 50, 51, 52, 54, 57, 47, 48, 60, 63, 65, 56, 53, 68, 55, 62, 58, 74, 66, 64, 59, 75, 76, 78, 61, 82, 67, 86, 70, 72, 92, 95, 69, 98, 85, 80, 71, 102, 84, 94, 88, 111
Offset: 1

Views

Author

Antti Karttunen, Jul 25 2015

Keywords

Crossrefs

Inverse: A260424.
Related permutations: A245703, A246377, A260422, A260425.

Programs

  • PARI
    allocatemem(123456789);
    default(primelimit,4294965247);
    uplim = 2^23;
    v206074 = vector(uplim); A206074 = n -> v206074[n];
    v205783 = vector(uplim); A205783 = n -> v205783[n];
    isA206074(n) = polisirreducible(Pol(binary(n)));
    v205783[1] = 1; i=0; j=1; n=2; while((n < uplim), if(!(n%65536),print1(n,", ")); if(isA206074(n), i++; v206074[i] = n, j++; v205783[j] = n); n++); print(n);
    A260423(n) = if(1==n, 1, if(isprime(n), A206074(A260423(primepi(n))), A205783(1+A260423(n-primepi(n)-1))));
    for(n=1, 10001, write("b260423.txt", n, " ", A260423(n)));
    
  • Scheme
    (definec (A260423 n) (cond ((<= n 1) n) ((= 1 (A010051 n)) (A206074 (A260423 (A000720 n)))) (else (A205783 (+ 1 (A260423 (A065855 n)))))))

Formula

a(1) = 1; for n > 1, if A010051(n) = 1 [when n is a prime], then a(n) = A206074(a(A000720(n))), otherwise [when n is a composite], a(n) = A205783(1+a(A065855(n))).
As a composition of related permutations:
a(n) = A260422(A246377(n)).
a(n) = A260425(A245703(n)).

A373826 Sorted positions of first appearances in the run-lengths (differing by 0) of the antirun-lengths (differing by > 2) of the odd primes.

Original entry on oeis.org

1, 4, 38, 6781, 23238, 26100
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2024

Keywords

Comments

Sorted positions of first appearances in A373820 (run-lengths of A027833 with 1 prepended).

Examples

			The odd primes begin:
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with antiruns (differing by > 2):
(3), (5), (7,11), (13,17), (19,23,29), (31,37,41), (43,47,53,59), ...
with lengths:
1, 1, 2, 2, 3, 3, 4, 3, 6, 2, 5, 2, 6, 2, 2, 4, 3, 5, 3, 4, 5, 12, ...
which have runs:
(1,1), (2,2), (3,3), (4), (3), (6), (2), (5), (2), (6), (2,2), (4), ...
with lengths:
2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
with sorted positions of first appearances a(n).
		

Crossrefs

Sorted positions of first appearances in A373820, cf. A027833.
For runs we have A373824 (unsorted A373825), sorted firsts of A373819.
The unsorted version is A373827.
A000040 lists the primes.
A001223 gives differences of consecutive primes, run-lengths A333254, run-lengths of run-lengths A373821.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.

Programs

  • Mathematica
    t=Length/@Split[Length /@ Split[Select[Range[3,10000],PrimeQ],#1+2!=#2&]];
    Select[Range[Length[t]],FreeQ[Take[t,#-1],t[[#]]]&]

A373827 Position of first appearance of n in the run-lengths (differing by 0) of the antirun-lengths (differing by > 2) of the odd primes.

Original entry on oeis.org

4, 1, 38, 6781, 26100, 23238
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2024

Keywords

Comments

Positions of first appearances in A373820 (run-lengths of A027833 with 1 prepended).

Examples

			The odd primes begin:
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with antiruns (differing by > 2):
(3), (5), (7,11), (13,17), (19,23,29), (31,37,41), (43,47,53,59), ...
with lengths:
1, 1, 2, 2, 3, 3, 4, 3, 6, 2, 5, 2, 6, 2, 2, 4, 3, 5, 3, 4, 5, 12, ...
which have runs:
(1,1), (2,2), (3,3), (4), (3), (6), (2), (5), (2), (6), (2,2), (4), ...
with lengths:
2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
with positions of first appearances a(n).
		

Crossrefs

Positions of first appearances in A373820.
For runs instead of antiruns we have A373825, sorted A373824.
The sorted version is A373826.
A000040 lists the primes.
A001223 gives differences of consecutive primes, run-lengths A333254, run-lengths of run-lengths A373821.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.

Programs

  • Mathematica
    t=Length/@Split[Length /@ Split[Select[Range[3,10000],PrimeQ],#1+2!=#2&]//Most]//Most;
    spna[y_]:=Max@@Select[Range[Length[y]],SubsetQ[t,Range[#1]]&];
    Table[Position[t,k][[1,1]],{k,spna[t]}]

A065857 The (10^n)-th composite number.

Original entry on oeis.org

4, 18, 133, 1197, 11374, 110487, 1084605, 10708555, 106091745, 1053422339, 10475688327, 104287176419, 1039019056246, 10358018863853, 103307491450820, 1030734020030318, 10287026204717358, 102692313540015924, 1025351434864118026, 10239531292310798956, 102270102190290407386
Offset: 0

Views

Author

Labos Elemer, Nov 26 2001

Keywords

Examples

			The 100th composite number is C(100)=133, while the 100th prime is 541. In general: A000720(m) < A062298(m) < m < A002808(m) < A000040(m), for example pi(100)=25 < 75 < 100 < C(100)=133 < prime(100)=541.
		

References

  • A. E. Bojarincev, Asymptotic expressions for the n-th composite number. Univ. Mat. Zap. 6:21-43(1967). [in Russian]
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 133, p. 45, Ellipses, Paris 2008.

Crossrefs

Programs

  • Mathematica
    Composite[n_Integer] := Block[ {k = n + PrimePi[n] + 1 }, While[ k != n + PrimePi[k] + 1, k = n + PrimePi[k] + 1]; Return[k]];
    Table[Composite[10^n], {n, 0, 9}]
  • PARI
    a(n)=my(k=10^n);forcomposite(n=4,2*k+2,if(k--==0,return(n))) \\ Charles R Greathouse IV, May 30 2013

Formula

a(n) = A002808(A011557(n)).
a(n) = 10^(n + n/log n + 2n/log^2 + 4n/log^3 n + O(n/log^4 n)). See Bojarincev for an asymptotic expansion. - Charles R Greathouse IV, May 30 2013

Extensions

More terms from Robert G. Wilson v, Nov 26 2001
a(14) from Lekraj Beedassy, Jul 14 2008
a(15)-a(19) from Chai Wah Wu, Apr 16 2018
a(20) from Chai Wah Wu, Aug 23 2018

A227797 Number of composites removed in each step in the Sieve of Eratosthenes for 10^8.

Original entry on oeis.org

49999999, 16666666, 6666666, 3809523, 2077920, 1598400, 1128284, 950133, 743581, 564099, 509508, 413103, 362709, 337382, 301484, 261684, 230683, 219393, 196552, 182782, 175351, 159910, 150351, 138581, 125778, 119552, 116075, 110630, 107564, 102739, 90485
Offset: 1

Views

Author

Eric F. O'Brien, Jul 31 2013

Keywords

Comments

The number of composites <= 10^8 for which the n-th prime is the least prime factor.
pi(sqrt(10^8)) = the number of terms of A227797.
The sum of a(n) for n = 1..1229 = A000720(10^8) + A065855(10^8).

Examples

			For n = 3, prime(n) = 5, a(n) = 6666666: 5 divides 10^8 20000000 times. 10 is the least common multiple of 2 (prime(1)) and 5 and 15 is the least common multiple of 3 (prime(2)) and 5; thus [10^8 / 10] multiples of 5 and [10^8 / 15] multiples of 5 have already been eliminated by a(1) and a(2), and thereby respectively reduce a(3) by 10000000 and 6666666 offset by [10^8 / 30] multiples of 5 which would otherwise excessively reduce a(3) by 3333333 because 30 is the least common multiple of 2, 3 and 5. a(3) is further reduced by 1 as 5 itself is not eliminated.
		

Crossrefs

Formula

Writing floor(a/b) as [a / b]:
a(1) = [10^8 / 2] - 1.
a(2) = [10^8 / 3] - [10^8 / 6] - 1.
a(3) = [10^8 / 5] - [10^8 / 10] - [10^8 / 15] + [10^8 / 30] - 1.
a(4) = [10^8 / 7] - [10^8 / 14] - [10^8 / 21] - [10^8 / 35] + [10^8 / 42] + [10^8 / 70] + [10^8 / 105] - [10^8 / 210] - 1.

A227798 Number of composites removed in each step of the Sieve of Eratosthenes for 10^9.

Original entry on oeis.org

499999999, 166666666, 66666666, 38095237, 20779220, 15984016, 11282834, 9501331, 7435826, 5640969, 5095068, 4131143, 3627360, 3374293, 3015292, 2616982, 2306411, 2192860, 1963654, 1825278, 1750219, 1595163, 1499127, 1381337, 1253379, 1191536
Offset: 1

Views

Author

Eric F. O'Brien, Jul 31 2013

Keywords

Comments

a(n) = the number of composites <= 10^9 for which the n-th prime is the least prime factor.
pi(sqrt(10^9)) = the number of terms of this sequence.
The sum of a(n) for n = 1..3401 = A000720(10^9) + A065855(10^9).

Examples

			a(1) = 10^9 \ 2 - 1.
a(2) = 10^9 \ 3 - 10^9 \ (2*3) - 1
a(3) = 10^9 \ 5 - 10^9 \ (2*5) - 10^9 \ (3*5) + 10^9 \ (2*3*5) - 1
a(4) = 10^9 \ 7 - 10^9 \ (2*7) - 10^9 \ (3*7) - 10^9 \ (5*7) + 10^9 \ (2*3*7) + 10^9 \ (2*5*7) + 10^9 \ (3*5*7) - 10^9 \ (2*3*5*7) - 1.
		

Crossrefs

A227799 Number of composites removed in each step of the Sieve of Eratosthenes for 10^10.

Original entry on oeis.org

4999999999, 1666666666, 666666666, 380952380, 207792207, 159840159, 112828348, 95013343, 74358271, 56409724, 50950713, 41311372, 36273411, 33742734, 30153115, 26170720, 23065826, 21931483, 19640105, 18256894, 17506397, 15954848, 14993294, 13813524, 12531256
Offset: 1

Views

Author

Eric F. O'Brien, Jul 31 2013

Keywords

Comments

a(n) = the number of composites <= 10^10 for which the n-th prime is the least prime factor.
pi(sqrt(10^10)) = the number of terms of this sequence.
The sum of a(n) for n = 1..3401 = A000720(10^10) + A065855(10^10).

Examples

			a(1) = 10^10 \ 2 - 1.
a(2) = 10^10 \ 3 - 10^10 \ (2*3) - 1.
a(3) = 10^10 \ 5 - 10^10 \ (2*5) - 10^10 \ (3*5) + 10^10 \ (2*3*5) - 1.
a(4) = 10^10 \ 7 - 10^10 \ (2*7) - 10^10 \ (3*7) - 10^10 \ (5*7) + 10^10 \ (2*3*7) + 10^10 \ (2*5*7) + 10^10 \ (3*5*7) - 10^10 \ (2*3*5*7) - 1.
		

Crossrefs

A262685 Least monotonic left inverse for A182859.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8, 9, 10, 10, 10, 11, 11, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 15, 15, 16, 17, 17, 17, 18, 19, 20, 20, 21, 21, 22, 22, 23, 23, 23, 23, 23, 23, 23, 24, 25, 25, 26, 26, 27, 27, 28, 28, 28, 28, 28, 29, 30, 30, 31, 31, 32, 33, 33, 33, 33, 33, 33, 33, 34, 34, 34, 34, 35, 35, 35, 35, 35, 35, 36
Offset: 1

Views

Author

Antti Karttunen, Sep 28 2015

Keywords

Comments

Partial sums of A262683.

Crossrefs

Formula

a(1) = 1, for n > 1, a(n) = A262683(n) + a(n-1).
Other identities and observations. For all n >= 1:
a(A182859(n)) = n.
a(n) <= 2 + A065855(n). [See formula section of A262684.]

Extensions

Typo in formula corrected by Antti Karttunen, Sep 09 2016

A373817 Positions of terms > 1 in the run-lengths of the first differences of the odd primes.

Original entry on oeis.org

2, 14, 34, 36, 42, 49, 66, 94, 98, 100, 107, 117, 147, 150, 169, 171, 177, 181, 199, 219, 250, 268, 315, 333, 361, 392, 398, 435, 477, 488, 520, 565, 570, 585, 592, 595, 628, 642, 660, 666, 688, 715, 744, 765, 772, 778, 829, 842, 897, 906, 931, 932, 961, 1025
Offset: 1

Views

Author

Gus Wiseman, Jun 23 2024

Keywords

Comments

Positions of terms > 1 in A333254. In other words, the a(n)-th run of differences of odd primes has length > 1.

Examples

			Primes 54 to 57 are {251, 257, 263, 269}, with differences (6,6,6). This is the 49th run, and the first of length > 2.
		

Crossrefs

Positions of adjacent equal prime gaps are A064113.
Positions of adjacent unequal prime gaps are A333214.
Positions of terms > 1 in A333254, run-lengths A373821, firsts A335406.
A000040 lists the primes, differences A001223.
A027833 gives antirun lengths of odd primes, run-lengths A373820.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.

Programs

  • Mathematica
    Join@@Position[Length /@ Split[Differences[Select[Range[1000],PrimeQ]]] // Most,x_Integer?(#>1&)]

A373823 Half the sum of the n-th maximal run of first differences of odd primes.

Original entry on oeis.org

2, 2, 1, 2, 1, 2, 3, 1, 3, 2, 1, 2, 6, 1, 3, 2, 1, 3, 2, 3, 4, 2, 1, 2, 1, 2, 7, 2, 3, 1, 5, 1, 6, 2, 6, 1, 5, 1, 2, 1, 12, 2, 1, 2, 3, 1, 5, 9, 1, 3, 2, 1, 5, 7, 2, 1, 2, 7, 3, 5, 1, 2, 3, 4, 6, 2, 3, 4, 2, 4, 5, 1, 5, 1, 3, 2, 3, 4, 2, 1, 2, 6, 4, 2, 4, 2, 3
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2024

Keywords

Comments

Halved run-sums of A001223.

Examples

			The odd primes are:
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with first differences:
2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, ...
with runs:
(2,2), (4), (2), (4), (2), (4), (6), (2), (6), (4), (2), (4), (6,6), ...
with halved sums a(n).
		

Crossrefs

Halved run-sums of A001223.
For run-lengths we have A333254, run-lengths of run-lengths A373821.
Multiplying by two gives A373822.
A000040 lists the primes.
A027833 gives antirun lengths of odd primes (partial sums A029707).
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
A373820 gives run-lengths of antirun-lengths of odd primes.

Programs

  • Mathematica
    Total/@Split[Differences[Select[Range[3,1000],PrimeQ]]]/2
Previous Showing 61-70 of 89 results. Next