cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A371814 a(n) = Sum_{k=0..n} (-1)^k * binomial(4*n-k-1,n-k).

Original entry on oeis.org

1, 2, 16, 128, 1068, 9142, 79612, 701864, 6244892, 55962920, 504375396, 4567003520, 41513817444, 378596616452, 3462411408136, 31742042431048, 291616814436124, 2684123914512280, 24746511514749280, 228491677484832896, 2112549277665243328
Offset: 0

Views

Author

Seiichi Manyama, Apr 06 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(4*n-k-1, n-k));

Formula

a(n) = [x^n] 1/((1+x) * (1-x)^(3*n)).
a(n) = binomial(4*n-1, n)*hypergeom([1, -n], [1-4*n], -1). - Stefano Spezia, Apr 07 2024
From Vaclav Kotesovec, Apr 07 2024: (Start)
Recurrence: 24*n*(3*n - 2)*(3*n - 1)*(415*n^3 - 1898*n^2 + 2871*n - 1436)*a(n) = (838715*n^6 - 5099533*n^5 + 12225995*n^4 - 14652035*n^3 + 9157250*n^2 - 2799192*n + 322560)*a(n-1) + 8*(2*n - 3)*(4*n - 7)*(4*n - 5)*(415*n^3 - 653*n^2 + 320*n - 48)*a(n-2).
a(n) ~ 2^(8*n + 1/2) / (5 * sqrt(Pi*n) * 3^(3*n - 1/2)). (End)
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(4*n,k). - Seiichi Manyama, Jul 30 2025
G.f.: g/((-1+2*g) * (4-3*g)) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 13 2025
a(n) = Sum_{k=0..n} (-1)^k * 2^(n-k) * binomial(4*n,k) * binomial(4*n-k-1,n-k). - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - x*g^3*(-4+6*g)) where g = 1+x*g^4 is the g.f. of A002293. - Seiichi Manyama, Aug 17 2025

A386918 a(n) = 2^n * binomial(4*n,n).

Original entry on oeis.org

1, 8, 112, 1760, 29120, 496128, 8614144, 151557120, 2692684800, 48201359360, 868004380672, 15706806542336, 285362317180928, 5202031080243200, 95104728494899200, 1743063914667048960, 32016101348447354880, 589188508080622534656, 10861173739509105295360
Offset: 0

Views

Author

Seiichi Manyama, Aug 08 2025

Keywords

Crossrefs

Programs

  • Magma
    [2^n * Binomial(4*n,n): n in [0..26]]; // Vincenzo Librandi, Aug 11 2025
  • Mathematica
    Table[2^n*Binomial[4*n,n],{n,0,30}] (* Vincenzo Librandi, Aug 11 2025 *)
  • PARI
    a(n) = 2^n*binomial(4*n, n);
    

Formula

a(n) = Sum_{k=0..n} binomial(4*n,k) * binomial(4*n-k,n-k).
a(n) = [x^n] (1+x)^(4*n)/(1-x)^(3*n+1).
a(n) = [x^n] 1/(1-2*x)^(3*n+1).
a(n) = [x^n] (1+2*x)^(4*n).

A386919 a(n) = Sum_{k=0..n} binomial(4*n,k) * binomial(2*n-k,n-k).

Original entry on oeis.org

1, 6, 58, 624, 7050, 81926, 969640, 11624976, 140708682, 1715727090, 21043480458, 259331888712, 3208566672792, 39830312782344, 495853462219600, 6188170518911264, 77393543796042570, 969771226630919754, 12172039459124750062, 153006230384961477600, 1925930502301667496250
Offset: 0

Views

Author

Seiichi Manyama, Aug 08 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(4*n,k) * Binomial(2*n-k,n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 10 2025
  • Mathematica
    Table[Sum[Binomial[4*n,k]*Binomial[2*n-k,n-k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 10 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(4*n, k)*binomial(2*n-k, n-k));
    

Formula

a(n) = [x^n] (1+x)^(4*n)/(1-x)^(n+1).
a(n) = [x^n] 1/((1-x)^(2*n) * (1-2*x)^(n+1)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(4*n,k) * binomial(3*n-k-1,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(n+k,k) * binomial(3*n-k-1,n-k).

A386920 a(n) = Sum_{k=0..n} binomial(4*n,k) * binomial(3*n-k,n-k).

Original entry on oeis.org

1, 7, 83, 1102, 15395, 221402, 3244430, 48173244, 722264355, 10910288290, 165788618138, 2531447611524, 38807906496398, 596945491933252, 9208704207465020, 142410375212008952, 2207122379129757987, 34272045530904650610, 533075544700619580002, 8304126391210396590900
Offset: 0

Views

Author

Seiichi Manyama, Aug 08 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(4*n,k) * Binomial(3*n-k,n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 10 2025
  • Mathematica
    Table[Sum[Binomial[4*n,k]*Binomial[3*n-k,n-k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 10 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(4*n, k)*binomial(3*n-k, n-k));
    

Formula

a(n) = [x^n] (1+x)^(4*n)/(1-x)^(2*n+1).
a(n) = [x^n] 1/((1-x)^n * (1-2*x)^(2*n+1)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(4*n,k) * binomial(2*n-k-1,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(2*n+k,k) * binomial(2*n-k-1,n-k).
a(n) ~ (2 + sqrt(2)) * 2^(4*n-2) / sqrt(Pi*n). - Vaclav Kotesovec, Aug 21 2025

A387034 a(n) = Sum_{k=0..n} binomial(4*n-4,k).

Original entry on oeis.org

1, 1, 11, 93, 794, 6885, 60460, 536155, 4791323, 43081973, 389329652, 3533047572, 32174057272, 293874981603, 2691171713924, 24700051833634, 227150464141969, 2092620625940629, 19308393192688804, 178406554524801820, 1650535921328322392, 15287533448476027572
Offset: 0

Views

Author

Seiichi Manyama, Aug 13 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(4*n-4, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 03 2025
  • Mathematica
    Table[Sum[Binomial[4*n-4,k], {k,0,n}], {n,0,25}] (* Vaclav Kotesovec, Aug 20 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(4*n-4, k));
    

Formula

a(n) = [x^n] (1+x)^(4*n-4)/(1-x).
a(n) = [x^n] 1/((1-x)^(3*n-4) * (1-2*x)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(4*n-4,k) * binomial(4*n-k-5,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(4*n-k-5,n-k).
G.f.: 1/(g^3 * (2-g) * (4-3*g)) where g = 1+x*g^4 is the g.f. of A002293.
D-finite with recurrence: 128*(4*n-11)*(2*n-5)*(4*n-9)*(44*n^3-122*n^2+18*n+105)*a(n-2)-8*(3784*n^6-37684*n^5+141548*n^4-238406*n^3+145758*n^2+37290*n-51975)*a(n-1)+3*n*(3*n-5)*(3*n-7)*(44*n^3-254*n^2+394*n-79)*a(n) = 0. - Georg Fischer, Aug 17 2025
a(n) ~ 2^(8*n - 17/2) / (sqrt(Pi*n) * 3^(3*n - 9/2)). - Vaclav Kotesovec, Aug 20 2025

A387035 a(n) = Sum_{k=0..n} binomial(4*n-3,k).

Original entry on oeis.org

1, 2, 16, 130, 1093, 9402, 82160, 726206, 6474541, 58115146, 524472448, 4754293704, 43257431931, 394821713910, 3613377083248, 33146854168628, 304692552429413, 2805871076597738, 25880523571338272, 239058748663208600, 2211058130414688244, 20474163633488699944
Offset: 0

Views

Author

Seiichi Manyama, Aug 13 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(4*n-3, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 03 2025
  • Mathematica
    Table[Sum[Binomial[4*n-3,k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Sep 03 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(4*n-3, k));
    

Formula

a(n) = [x^n] (1+x)^(4*n-3)/(1-x).
a(n) = [x^n] 1/((1-x)^(3*n-3) * (1-2*x)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(4*n-3,k) * binomial(4*n-k-4,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(4*n-k-4,n-k).
G.f.: 1/(g^2 * (2-g) * (4-3*g)) where g = 1+x*g^4 is the g.f. of A002293.
D-finite with recurrence: 128*(4*n-7)*(2*n-5)*(4*n-9)*(22*n^3-50*n^2+5*n+30)*a(n-2) -8*(1892*n^6-16004*n^5+51038*n^4-73470*n^3+39874*n^2+6165*n-9450)*a(n-1) +3*n*(3*n-4)*(3*n-5)*(22*n^3-116*n^2+171*n-47)*a(n) = 0. - Georg Fischer, Aug 17 2025

A387036 a(n) = Sum_{k=0..n} binomial(4*n-2,k).

Original entry on oeis.org

1, 3, 22, 176, 1471, 12616, 110056, 971712, 8656937, 77663192, 700614760, 6349125440, 57754842117, 527046644056, 4822774262296, 44235726874816, 406582639811581, 3743845040832376, 34529632747211560, 318931047174438720, 2949641596923575548, 27312107861301870368
Offset: 0

Views

Author

Seiichi Manyama, Aug 13 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(4*n-2, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 03 2025
  • Mathematica
    Table[Sum[Binomial[4*n-2,k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Sep 03 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(4*n-2, k));
    

Formula

a(n) = [x^n] (1+x)^(4*n-2)/(1-x).
a(n) = [x^n] 1/((1-x)^(3*n-2) * (1-2*x)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(4*n-2,k) * binomial(4*n-k-3,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(4*n-k-3,n-k).
G.f.: 1/(g * (2-g) * (4-3*g)) where g = 1+x*g^4 is the g.f. of A002293.
D-finite with recurrence: 128*(4*n-7)*(2*n-3)*(4*n-9)*(22*n^2-17*n-15)*a(n-2) -8*(1892*n^5-11274*n^4+23326*n^3-18132*n^2+1323*n+2835)*a(n-1) +3*n*(3*n-4)*(3*n-5)*(22*n^2-61*n+24)*a(n) = 0. - Georg Fischer, Aug 17 2025

A268315 Decimal expansion of 256/27.

Original entry on oeis.org

9, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8
Offset: 1

Views

Author

Gheorghe Coserea, Feb 01 2016

Keywords

Examples

			9.481481481481481481481481481481...
		

Crossrefs

Programs

  • Magma
    [9] cat &cat[[4, 8, 1]^^45]; // Vincenzo Librandi, Feb 04 2016
  • Mathematica
    Join[{9}, PadRight[{}, 120, {4, 8, 1}]] (* Vincenzo Librandi, Feb 04 2016 *)
  • PARI
    1.0 * 256/27
    

Extensions

More digits from Jon E. Schoenfield, Mar 15 2018
Previous Showing 11-18 of 18 results.