cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 47 results. Next

A130005 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+577)^2 = y^2.

Original entry on oeis.org

0, 35, 1568, 1731, 1908, 10595, 11540, 12567, 63156, 68663, 74648, 369495, 401592, 436475, 2154968, 2342043, 2545356, 12561467, 13651820, 14836815, 73214988, 79570031, 86476688, 426729615, 463769520, 504024467, 2487163856, 2703048243
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 15 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+577, y).
Corresponding values y of solutions (x, y) are in A159626.
For the generic case x^2+(x+p)^2 = y^2 with p = 2*m^2-1 a (prime) number in A066436 see A118673 or A129836.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (579+34*sqrt(2))/577 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (855171+556990*sqrt(2))/577^2 for n mod 3 = 0.

Crossrefs

Cf. A159626, A066436, A118673, A118674, A129836, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159627 (decimal expansion of (579+34*sqrt(2))/577), A159628 (decimal expansion of (855171+556990*sqrt(2))/577^2).

Programs

  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,35,1568,1731,1908,10595,11540},30] (* Harvey P. Dale, May 27 2018 *)
  • PARI
    {forstep(n=0, 500000000, [3, 1], if(issquare(2*n^2+1154*n+332929), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+1154 for n > 6; a(1)=0, a(2)=35, a(3)=1568, a(4)=1731, a(5)=1908, a(6)=10595.
G.f.: x*(35+1533*x+163*x^2-33*x^3-511*x^4-33*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 577*A001652(k) for k >= 0.

Extensions

Edited and two terms added by Klaus Brockhaus, Apr 21 2009

A130014 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+881)^2 = y^2.

Original entry on oeis.org

0, 43, 2440, 2643, 2860, 16443, 17620, 18879, 97980, 104839, 112176, 573199, 613176, 655939, 3342976, 3575979, 3825220, 19486419, 20844460, 22297143, 113577300, 121492543, 129959400, 661979143, 708112560, 757461019, 3858299320
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 15 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+881, y).
Corresponding values y of solutions (x, y) are in A159690.
For the generic case x^2+(x+p)^2 = y^2 with p = 2*m^2-1 a (prime) number in A066436 see A118673 or A129836.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (883+42*sqrt(2))/881 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (2052963+1343918*sqrt(2))/881^2 for n mod 3 = 0.

Crossrefs

Cf. A159690, A066436, A118673, A118674, A129836, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159691 (decimal expansion of (883+42*sqrt(2))/881), A159692 (decimal expansion of (2052963+1343918*sqrt(2))/881^2).

Programs

  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,43,2440,2643,2860,16443,17620},30] (* Harvey P. Dale, Aug 13 2015 *)
  • PARI
    {forstep(n=0, 10000000, [1, 3], if(issquare(2*n^2+1762*n+776161), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+1762 for n > 6; a(1)=0, a(2)=43, a(3)=2440, a(4)=2643, a(5)=2860, a(6)=16443.
G.f.: x*(43+2397*x+203*x^2-41*x^3-799*x^4-41*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 881*A001652(k) for k >= 0.

Extensions

Edited and two terms added by Klaus Brockhaus, Apr 21 2009

A143830 Primes of the form 12*n^2-1.

Original entry on oeis.org

11, 47, 107, 191, 431, 587, 971, 1451, 2027, 2351, 2699, 3467, 4799, 5807, 6911, 7499, 8111, 8747, 10091, 10799, 14699, 15551, 16427, 17327, 18251, 25391, 27647, 36299, 41771, 44651, 55487, 57131, 62207, 67499, 71147, 74891, 80687, 92927, 99371
Offset: 1

Views

Author

Artur Jasinski, Sep 02 2008

Keywords

Comments

Equals A089682 without the 2. [Sketch of proof: the primes 3*n^2-1 are odd if 2 is left out, so 3*n^2 is even, so n^2 is even, so n is even = 2*k. 3*(2*k)^2-1 = 12*k^2-1.] [From R. J. Mathar, Sep 04 2008]

Crossrefs

Programs

  • Mathematica
    p = 12; a = {}; Do[k = p x^2 - 1; If[PrimeQ[k], AppendTo[a, k]], {x, 1, 1000}]; a

A143835 a(n) = Number of x <= 10^n such that 2x^2-1 is prime.

Original entry on oeis.org

7, 45, 303, 2202, 17185, 141444, 1200975, 10448345, 92435171, 828797351, 7511268020, 68680339342
Offset: 1

Views

Author

Artur Jasinski, Sep 02 2008, Sep 04 2008

Keywords

Examples

			a(1) = 7 because are 7 different x ={2, 3, 4, 6, 7, 8, 10} <= 10^1 where 2x^2-1 is prime = {7, 17, 31, 71, 97, 127, 199}.
		

Crossrefs

Programs

  • Mathematica
    l = 0; p = 2; a = {}; Do[k = p x^2 - 1; If[PrimeQ[k], l = l + 1]; If[N[Log[x]/Log[10]] == Round[N[Log[x]/Log[10]]], Print[l]; AppendTo[a, l]], {x, 1, 10000000}]; a (*Artur Jasinski*)

Extensions

Added link and extended to agree with website. - Ray Chandler, Jun 30 2015

A291167 Numbers k such that psi(k) is a perfect square where psi(k) = A001615(k).

Original entry on oeis.org

1, 3, 18, 20, 22, 27, 60, 66, 70, 72, 80, 88, 92, 94, 99, 115, 119, 162, 170, 210, 212, 214, 217, 240, 243, 252, 264, 265, 276, 280, 282, 288, 308, 310, 315, 320, 322, 345, 352, 357, 368, 376, 382, 385, 423, 497, 500, 510, 517, 527, 540, 594, 596, 612, 636, 637, 642, 648, 651, 679, 680, 710, 725, 742
Offset: 1

Views

Author

Altug Alkan, Aug 19 2017

Keywords

Comments

The product of an even number of distinct members of A066436 is in the sequence. - Robert Israel, Aug 22 2017

Examples

			60 is a term because psi(60) = 144 is a perfect square.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) issqr(n*mul(1+1/p,p=numtheory:-factorset(n))) end proc:
    select(filter, [$1..1000]); # Robert Israel, Aug 22 2017
  • Mathematica
    Select[Range@ 750, IntegerQ@ Sqrt[# Sum[MoebiusMu[d]^2/d, {d, Divisors@ #}]] &] (* Michael De Vlieger, Aug 19 2017 *)
  • PARI
    a001615(n) = n*sumdivmult(n, d, issquarefree(d)/d);
    is(n) = issquare(a001615(n));

A076294 Consider all Pythagorean triples (X,X+7,Z); sequence gives Z values.

Original entry on oeis.org

5, 7, 13, 17, 35, 73, 97, 203, 425, 565, 1183, 2477, 3293, 6895, 14437, 19193, 40187, 84145, 111865, 234227, 490433, 651997, 1365175, 2858453, 3800117, 7956823, 16660285, 22148705, 46375763, 97103257, 129092113, 270297755, 565959257, 752403973, 1575410767
Offset: 0

Views

Author

Henry Bottomley, Oct 05 2002

Keywords

Comments

First two terms included for consistency with A076293.
For the generic case x^2+(x+p)^2=y^2 with p=2*m^2-1 a prime number in A066436, m>=2, the x values are given by the sequence defined by: a(n)=6*a(n-3)-a(n-6)+2p with a(1)=0, a(2)=2m+1, a(3)=6m^2-10m+4, a(4)=3p, a(5)=6m^2+10m+4, a(6)=40m^2-58m+21.Y values are given by the sequence defined by: b(n)=6*b(n-3)-b(n-6) with b(1)=p, b(2)=2*m^2+2m+1, b(3)=10m^2-14m+5, b(4)=5p, b(5)=10m^2+14m+5, b(6)=58m^2-82m+29. - Mohamed Bouhamida, Sep 09 2009

Examples

			17 is in the sequence as the hypotenuse of the (8,15,17) triangle.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1},{5,7,13,17,35,73},40] (* Harvey P. Dale, Mar 19 2019 *)
  • PARI
    Vec((1 - x)*(5 + 12*x + 25*x^2 + 12*x^3 + 5*x^4) / (1 - 6*x^3 + x^6) + O(x^50)) \\ Colin Barker, Apr 25 2017

Formula

a(n) = 6*a(n-3)-a(n-6) = sqrt((A076293(n)^2+49)/2) = sqrt(A076295(n)^2 + A076296(n)^2).
a(3n+1) = 7*A001653(n).
G.f.: (1 - x)*(5 + 12*x + 25*x^2 + 12*x^3 + 5*x^4) / (1 - 6*x^3 + x^6). - Colin Barker, Apr 25 2017

A143831 Numbers n such that 12n^2 - 1 is prime.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 9, 11, 13, 14, 15, 17, 20, 22, 24, 25, 26, 27, 29, 30, 35, 36, 37, 38, 39, 46, 48, 55, 59, 61, 68, 69, 72, 75, 77, 79, 82, 88, 91, 93, 94, 102, 105, 107, 108, 115, 116, 117, 118, 121, 124, 130, 134, 136, 137, 140, 149, 152, 154, 157, 158, 159, 162, 167
Offset: 1

Views

Author

Artur Jasinski, Sep 02 2008

Keywords

Crossrefs

Programs

  • Mathematica
    p = 12; a = {}; Do[k = p x^2 - 1; If[PrimeQ[k], AppendTo[a, x]], {x, 1, 1000}]; a
  • PARI
    is(n)=isprime(12*n^2-1) \\ Charles R Greathouse IV, Feb 20 2017

A143833 Numbers n such that 14n^2 - 1 is prime.

Original entry on oeis.org

1, 4, 5, 6, 10, 11, 16, 21, 26, 34, 36, 44, 45, 49, 54, 55, 59, 65, 69, 71, 76, 80, 85, 91, 95, 96, 100, 104, 106, 110, 114, 115, 120, 121, 125, 135, 139, 166, 169, 176, 180, 190, 195, 201, 204, 206, 214, 226, 230, 231, 234, 241, 254, 256, 264, 265, 269, 270, 275, 280
Offset: 1

Views

Author

Artur Jasinski, Sep 02 2008

Keywords

Crossrefs

Programs

  • Mathematica
    p = 14; a = {}; Do[k = p x^2 - 1; If[PrimeQ[k], AppendTo[a, x]], {x, 1, 1000}]; a
    Select[Range[300],PrimeQ[14#^2-1]&] (* Harvey P. Dale, Aug 29 2011 *)
  • PARI
    is(n)=isprime(14*n^2-1) \\ Charles R Greathouse IV, Feb 20 2017

A157469 Positive numbers y such that y^2 is of the form x^2 + (x+97)^2 with integer x.

Original entry on oeis.org

85, 97, 113, 397, 485, 593, 2297, 2813, 3445, 13385, 16393, 20077, 78013, 95545, 117017, 454693, 556877, 682025, 2650145, 3245717, 3975133, 15446177, 18917425, 23168773, 90026917, 110258833, 135037505, 524715325, 642635573, 787056257
Offset: 1

Views

Author

Klaus Brockhaus, Mar 12 2009

Keywords

Comments

(-13,a(1)) and (A129836(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2 + (x+97)^2 = y^2.
Lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
Lim_{n -> infinity} a(n)/a(n-1) = (99+14*sqrt(2))/97 for n mod 3 = {0, 2}.
Lim_{n -> infinity} a(n)/a(n-1) = (19491+12070*sqrt(2))/97^2 for n mod 3 = 1.
For the generic case x^2+(x+p)^2=y^2 with p=2*m^2-1 a prime number in A066436, m>=2, the x values are given by the sequence defined by: a(n)=6*a(n-3)-a(n-6)+2p with a(1)=0, a(2)=2m+1, a(3)=6m^2-10m+4, a(4)=3p, a(5)=6m^2+10m+4, a(6)=40m^2-58m+21.Y values are given by the sequence defined by: b(n)=6*b(n-3)-b(n-6) with b(1)=p, b(2)=2m^2+2m+1, b(3)=10m^2-14m+5, b(4)=5p, b(5)=10m^2+14m+5, b(6)=58m^2-82m+29. - Mohamed Bouhamida, Sep 09 2009

Examples

			(-13, a(1)) = (-13, 85) is a solution: (-13)^2+(-13+97)^2 = 169+7056 = 7225 = 85^2.
(A129836(1), a(2)) = (0, 97) is a solution: 0^2+(0+97)^2 = 9409 = 97^2.
(A129836(3), a(4)) = (228, 397) is a solution: 228^2+(228+97)^2 = 51984+105625 = 157609 = 397^2.
		

Crossrefs

Cf. A129836, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A157470 (decimal expansion of (99+14*sqrt(2))/97), A157471 (decimal expansion of (19491+12070*sqrt(2))/97^2).

Programs

  • Magma
    I:=[85,97,113,397,485,593]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..50]]; // G. C. Greubel, Mar 31 2018
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1},{85,97,113,397,485,593},30] (* Harvey P. Dale, Apr 04 2013 *)
  • PARI
    {forstep(n=-20, 800000000, [3, 1], if(issquare(2*n^2+194*n+9409, &k), print1(k, ",")))};
    

Formula

a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=85, a(2)=97, a(3)=113, a(4)=397, a(5)=485, a(6)=593.
G.f.: (1-x)*(85 + 182*x + 295*x^2 + 182*x^3 + 85*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 97*A001653(k) for k >= 1.

A157646 Positive numbers y such that y^2 is of the form x^2 + (x+31)^2 with integer x.

Original entry on oeis.org

25, 31, 41, 109, 155, 221, 629, 899, 1285, 3665, 5239, 7489, 21361, 30535, 43649, 124501, 177971, 254405, 725645, 1037291, 1482781, 4229369, 6045775, 8642281, 24650569, 35237359, 50370905, 143674045, 205378379, 293583149, 837393701
Offset: 1

Views

Author

Klaus Brockhaus, Mar 11 2009

Keywords

Comments

(-7,a(1)) and (A118674(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+31)^2 = y^2.
Lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
Lim_{n -> infinity} a(n)/a(n-1) = (33+8*sqrt(2))/31 for n mod 3 = {0, 2}.
Lim_{n -> infinity} a(n)/a(n-1) = (1539+850*sqrt(2))/31^2 for n mod 3 = 1.
For the generic case x^2+(x+p)^2=y^2 with p=2*m^2-1 a prime number in A066436, m>=2, the x values are given by the sequence defined by: a(n)=6*a(n-3)-a(n-6)+2p with a(1)=0, a(2)=2m+1, a(3)=6m^2-10m+4, a(4)=3p, a(5)=6m^2+10m+4, a(6)=40m^2-58m+21.Y values are given by the sequence defined by: b(n)=6*b(n-3)-b(n-6) with b(1)=p, b(2)=2m^2+2m+1, b(3)=10m^2-14m+5, b(4)=5p, b(5)=10m^2+14m+5, b(6)=58m^2-82m+29. - Mohamed Bouhamida, Sep 09 2009

Examples

			(-7, a(1)) = (-7, 25) is a solution: (-7)^2+(-7+31)^2 = 49+576 = 625 = 25^2.
(A118674(1), a(2)) = (0, 31) is a solution: 0^2+(0+31)^2 = 961 = 31^2.
(A118674(3), a(4)) = (60, 109) is a solution: 60^2+(60+31)^2 = 3600+8281 = 11881 = 109^2.
		

Crossrefs

Cf. A118674, A001653, A002193 (decimal expansion of sqrt(2)), A156035 (decimal expansion of 3+2*sqrt(2)), A157647 (decimal expansion of (33+8*sqrt(2))/31), A157648 (decimal expansion of (1539+850*sqrt(2))/31^2).

Programs

  • Magma
    I:=[25,31,41,109,155,221]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..50]]; // G. C. Greubel, Mar 31 2018
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1},{25,31,41,109,155,221},40] (* Harvey P. Dale, Oct 12 2017 *)
  • PARI
    {forstep(n=-8, 840000000, [1, 3], if(issquare(2*n^2+62*n+961, &k), print1(k, ",")))};
    

Formula

a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=25, a(2)=31, a(3)=41, a(4)=109, a(5)=155, a(6)=221.
G.f.: (1-x)*(25 + 56*x + 97*x^2 + 56*x^3 + 25*x^4)/(1 - 6*x^3 + x^6).
a(3*k-1) = 31*A001653(k) for k >= 1.
Previous Showing 21-30 of 47 results. Next