cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A073353 Sum of n and its squarefree kernel.

Original entry on oeis.org

2, 4, 6, 6, 10, 12, 14, 10, 12, 20, 22, 18, 26, 28, 30, 18, 34, 24, 38, 30, 42, 44, 46, 30, 30, 52, 30, 42, 58, 60, 62, 34, 66, 68, 70, 42, 74, 76, 78, 50, 82, 84, 86, 66, 60, 92, 94, 54, 56, 60, 102, 78, 106, 60, 110, 70, 114, 116, 118, 90, 122, 124, 84, 66, 130, 132
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 29 2002

Keywords

Comments

a(n) is even; a(n)=2*n iff n is squarefree.
Least k >n such that n divides k^n. - Benoit Cloitre, Oct 09 2002
a(n) is the smallest integer > n such that the positive integers coprime to a(n) are also coprime to n. - Leroy Quet, Dec 24 2006

Crossrefs

Programs

Formula

a(n) = n + A007947(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 1 + A065463 = 1.704442... . - Amiram Eldar, Dec 07 2023

A326128 a(n) = n - A007913(n), where A007913 gives the squarefree part of n.

Original entry on oeis.org

0, 0, 0, 3, 0, 0, 0, 6, 8, 0, 0, 9, 0, 0, 0, 15, 0, 16, 0, 15, 0, 0, 0, 18, 24, 0, 24, 21, 0, 0, 0, 30, 0, 0, 0, 35, 0, 0, 0, 30, 0, 0, 0, 33, 40, 0, 0, 45, 48, 48, 0, 39, 0, 48, 0, 42, 0, 0, 0, 45, 0, 0, 56, 63, 0, 0, 0, 51, 0, 0, 0, 70, 0, 0, 72, 57, 0, 0, 0, 75, 80, 0, 0, 63, 0, 0, 0, 66, 0, 80, 0, 69, 0, 0, 0, 90, 0, 96, 88, 99, 0, 0, 0, 78, 0
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Mod[e, 2]; a[n_] := n - Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Mar 21 2024 *)
  • PARI
    A326128(n) = (n-core(n));

Formula

a(n) = n - A007913(n).
a(n) = A326127(n) + A033879(n).
a(n) >= A066503(n).
a(n) = A007913(n) * A336642(n). - Antti Karttunen, Jul 28 2020
Sum_{k=1..n} a(k) ~ c * n^2, where c = 1/2 - Pi^2/30 = 0.171013... . - Amiram Eldar, Mar 21 2024

A380987 Position of first appearance of n in A290106 (product of prime indices divided by product of distinct prime indices).

Original entry on oeis.org

1, 9, 25, 27, 121, 169, 289, 81, 125, 841, 961, 675, 1681, 1849, 2209, 243, 3481, 1125, 4489, 3267, 5329, 6241, 6889, 2025, 1331, 10201, 625, 7803, 11881, 12769, 16129, 729, 18769, 19321, 22201, 2197, 24649, 26569, 27889, 9801, 32041, 32761, 36481, 25947
Offset: 1

Views

Author

Gus Wiseman, Feb 14 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
All terms are odd.

Examples

			The first position of 12 in A290106 is 675, with prime indices {2,2,2,3,3}, so a(12) = 675.
The terms together with their prime indices begin:
      1: {}
      9: {2,2}
     25: {3,3}
     27: {2,2,2}
    121: {5,5}
    169: {6,6}
    289: {7,7}
     81: {2,2,2,2}
    125: {3,3,3}
    841: {10,10}
    961: {11,11}
    675: {2,2,2,3,3}
   1681: {13,13}
   1849: {14,14}
   2209: {15,15}
    243: {2,2,2,2,2}
   3481: {17,17}
   1125: {2,2,3,3,3}
		

Crossrefs

For factors instead of indices we have A064549 (sorted A001694), firsts of A003557.
The additive version for factors is A280286 (sorted A381075), firsts of A280292.
Position of first appearance of n in A290106.
The additive version is A380956 (sorted A380957), firsts of A380955.
For difference instead of quotient see A380986.
The sorted version is A380988.
A000040 lists the primes, differences A001223.
A003963 gives product of prime indices, distinct A156061.
A005117 lists squarefree numbers, complement A013929.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, length A001222.
A304038 lists distinct prime indices, sum A066328, length A001221.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    q=Table[Times@@prix[n]/Times@@Union[prix[n]],{n,10000}];
    Table[Position[q,k][[1,1]],{k,mnrm[q]}]

A380988 Sorted positions of first appearances in A290106 (product of prime indices divided by product of distinct prime indices).

Original entry on oeis.org

1, 9, 25, 27, 81, 121, 125, 169, 243, 289, 625, 675, 729, 841, 961, 1125, 1331, 1681, 1849, 2025, 2187, 2197, 2209, 3125, 3267, 3481, 4489, 4913, 5329, 5625, 6075, 6241, 6561, 6889, 7803, 9801, 10125, 10201, 11881, 11979, 12769, 14641, 15125, 15625, 16129
Offset: 1

Views

Author

Gus Wiseman, Feb 18 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
All terms are odd.

Examples

			The prime indices of 225 are {2,2,3,3}, with image A290106(225) = 6. The prime indices of 169 are {6,6}, also with image 6. Since the latter is the first with image 6, 169 is in the sequence, and 225 is not.
The terms together with their prime indices begin:
     1: {}
     9: {2,2}
    25: {3,3}
    27: {2,2,2}
    81: {2,2,2,2}
   121: {5,5}
   125: {3,3,3}
   169: {6,6}
   243: {2,2,2,2,2}
   289: {7,7}
   625: {3,3,3,3}
   675: {2,2,2,3,3}
   729: {2,2,2,2,2,2}
   841: {10,10}
   961: {11,11}
  1125: {2,2,3,3,3}
  1331: {5,5,5}
  1681: {13,13}
  1849: {14,14}
  2025: {2,2,2,2,3,3}
		

Crossrefs

For factors instead of indices we have A001694 (unsorted A064549), firsts of A003557.
Sorted firsts of A290106.
The additive version is A380957 (sorted A380956), firsts of A380955.
For difference instead of quotient see A380986.
The unsorted version is A380987.
The additive version for factors is A381075 (unsorted A280286), firsts of A280292.
A000040 lists the primes, differences A001223.
A003963 gives product of prime indices, distinct A156061.
A005117 lists squarefree numbers, complement A013929.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, length A001222.
A304038 lists distinct prime indices, sum A066328, length A001221.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    q=Table[Times@@prix[n]/Times@@Union[prix[n]],{n,1000}];
    Select[Range[Length[q]],FreeQ[Take[q,#-1],q[[#]]]&]

A284318 Triangle read by rows in which row n lists divisors d of n such that n divides d^n.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 7, 2, 4, 8, 3, 9, 10, 11, 6, 12, 13, 14, 15, 2, 4, 8, 16, 17, 6, 18, 19, 10, 20, 21, 22, 23, 6, 12, 24, 5, 25, 26, 3, 9, 27, 14, 28, 29, 30, 31, 2, 4, 8, 16, 32, 33, 34, 35, 6, 12, 18, 36, 37, 38, 39, 10, 20, 40, 41, 42, 43, 22, 44, 15, 45, 46, 47, 6, 12, 24, 48, 7, 49, 10, 50
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 25 2017

Keywords

Comments

Row n lists divisors of n that are divisible by A007947(n). - Robert Israel, Apr 27 2017

Examples

			Triangle begins:
    1;
    2;
    3;
    2, 4;
    5;
    6;
    7;
    2, 4, 8;
    3, 9;
    10;
    11;
    6, 12;
    13;
    14;
    15;
    2, 4, 8, 16.
		

Crossrefs

Cf. A000961 (1 together with k such that k divides p^k for some prime divisor p of k), A005361 (row length), A007774 (m such that m divides s^m for some semiprime divisor s of m), A007947 (smallest u such that u^n|n and n|u, or divisor k such that A000005(k) = 2^A001221(n)), A057723 (row sums), A066503 (difference between largest x and smallest y such that x^n|n, n|x, y^n|n and n|y).

Programs

  • Magma
    [[u: u in [1..n] | Denominator(n/u) eq 1 and Denominator(u^n/n) eq 1]: n in [1..50]];
    
  • Maple
    f:= proc(n) local r;
        r:= convert(numtheory:-factorset(n),`*`);
        op(sort(convert(map(`*`, numtheory:-divisors(n/r),r),list)))
    end proc:
    map(f, [$1..100]); # Robert Israel, Apr 27 2017
  • Mathematica
    Flatten[Table[Select[Range[n], Divisible[n, #] && Divisible[#^n, n] &], {n, 50}]] (* Indranil Ghosh, Mar 25 2017 *)
  • PARI
    for(n=1, 50, for(i=1, n, if(n%i==0 & (i^n)%n==0, print1(i,", "););); print();); \\ Indranil Ghosh, Mar 25 2017
    
  • Python
    for n in range(1, 51):
        print([i for i in range(1, n + 1) if n%i==0 and (i**n)%n==0]) # Indranil Ghosh, Mar 25 2017

Formula

T(n,k) = A007947(n) * A027750(A003557(n), k). - Robert Israel, Apr 27 2017

A326142 Sum of all other divisors of n except its largest squarefree divisor: a(n) = sigma(n) - A007947(n).

Original entry on oeis.org

0, 1, 1, 5, 1, 6, 1, 13, 10, 8, 1, 22, 1, 10, 9, 29, 1, 33, 1, 32, 11, 14, 1, 54, 26, 16, 37, 42, 1, 42, 1, 61, 15, 20, 13, 85, 1, 22, 17, 80, 1, 54, 1, 62, 63, 26, 1, 118, 50, 83, 21, 72, 1, 114, 17, 106, 23, 32, 1, 138, 1, 34, 83, 125, 19, 78, 1, 92, 27, 74, 1, 189, 1, 40, 109, 102, 19, 90, 1, 176, 118, 44, 1, 182, 23, 46, 33
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    rad[n_] := Times @@ FactorInteger[n][[;; , 1]]; a[n_] := DivisorSigma[1, n] - rad[n]; Array[a, 100] (* Amiram Eldar, Dec 05 2023 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    A326142(n) = (sigma(n)-A007947(n));

Formula

a(n) = A000203(n) - A007947(n).
a(n) = n + A326143(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A013661 - A065463 = 0.940491... . - Amiram Eldar, Dec 05 2023

A336551 a(n) = A003557(n) - 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 3, 2, 0, 0, 1, 0, 0, 0, 7, 0, 2, 0, 1, 0, 0, 0, 3, 4, 0, 8, 1, 0, 0, 0, 15, 0, 0, 0, 5, 0, 0, 0, 3, 0, 0, 0, 1, 2, 0, 0, 7, 6, 4, 0, 1, 0, 8, 0, 3, 0, 0, 0, 1, 0, 0, 2, 31, 0, 0, 0, 1, 0, 0, 0, 11, 0, 0, 4, 1, 0, 0, 0, 7, 26, 0, 0, 1, 0, 0, 0, 3, 0, 2, 0, 1, 0, 0, 0, 15, 0, 6, 2, 9, 0, 0, 0, 3, 0
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2020

Keywords

Crossrefs

Programs

  • PARI
    A336551(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); (factorback(f)-1); };

Formula

a(n) = A066503(n) / A007947(n).

A326145 Numbers n for which n - A007947(n) is equal to gcd(n - A007947(n), sigma(n) - A007947(n) - n).

Original entry on oeis.org

6, 28, 496, 936, 1638, 8128, 33550336
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2019

Keywords

Comments

Numbers n such that either A066503(n) and A326143(n) are both zero or A066503(n) is not zero and divides A326143(n).
Question: Are there any odd terms?
No other terms < 2^31.

Crossrefs

Programs

  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    isA326145(n) = { my(b=A007947(n), t=n-b, u = (sigma(n)-b)-n); (gcd(t,u)==t); };
    \\ Or alternatively as:
    isA326145(n) = { my(t=A326143(n), u=A066503(n)); ((!u && !t)||(u && !(t%u))); };

A336644 a(n) = (n-rad(n)) / core(n), where rad(n) and core(n) give the squarefree kernel and squarefree part of n, respectively.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 3, 6, 0, 0, 2, 0, 0, 0, 14, 0, 6, 0, 2, 0, 0, 0, 3, 20, 0, 8, 2, 0, 0, 0, 15, 0, 0, 0, 30, 0, 0, 0, 3, 0, 0, 0, 2, 6, 0, 0, 14, 42, 20, 0, 2, 0, 8, 0, 3, 0, 0, 0, 2, 0, 0, 6, 62, 0, 0, 0, 2, 0, 0, 0, 33, 0, 0, 20, 2, 0, 0, 0, 14, 78, 0, 0, 2, 0, 0, 0, 3, 0, 6, 0, 2, 0, 0, 0, 15, 0, 42, 6, 90, 0, 0, 0, 3, 0
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2020

Keywords

Crossrefs

Programs

  • PARI
    A336644(n) = ((n-factorback(factorint(n)[, 1])) / core(n));
    
  • Python
    from math import prod
    from sympy.ntheory.factor_ import primefactors, core
    def A336644(n): return (n-prod(primefactors(n)))//core(n) # Chai Wah Wu, Dec 30 2021

Formula

a(n) = A066503(n) / A007913(n) = (n-A007947(n)) / A007913(n).
a(n) = A008833(n) - A336643(n).

A073354 Binomial coefficient ( n, squarefree kernel(n) ).

Original entry on oeis.org

1, 1, 1, 6, 1, 1, 1, 28, 84, 1, 1, 924, 1, 1, 1, 120, 1, 18564, 1, 184756, 1, 1, 1, 134596, 53130, 1, 2925, 40116600, 1, 1, 1, 496, 1, 1, 1, 1947792, 1, 1, 1, 847660528, 1, 1, 1, 2104098963720, 344867425584, 1, 1, 12271512, 85900584, 10272278170, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 29 2002

Keywords

Comments

a(n)=1 iff n is squarefree.

Crossrefs

Programs

  • Maple
    f:= proc(n) local k;
      k:= convert(numtheory:-factorset(n),`*`);
      binomial(n,k)
    end proc:
    map(f, [$1..60]); # Robert Israel, May 07 2021
  • Mathematica
    a[n_] := Binomial[n, Times @@ FactorInteger[n][[All, 1]]];
    Table[a[n], {n, 1, 60}] (* Jean-François Alcover, May 11 2023 *)

Formula

a(n) = binomial(n, A007947(n)).
Previous Showing 11-20 of 23 results. Next