cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A366833 Number of times n appears in A362965 (number of primes <= the n-th prime power).

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Paolo Xausa, Oct 25 2023

Keywords

Comments

Conjecture: a(n) can be only 1, 2, or 3 (with the first occurrences of 3 appearing at n = 4, 9, 30, 327 and 3512).
One less than the number of prime powers between prime(n) and prime(n+1), inclusive. - Gus Wiseman, Jan 09 2025

Crossrefs

Run lengths of A362965.
Subtracting one gives A080101.
For non prime powers we have A368748.
Positions of terms > 1 are A377057.
Positions of 1 are A377286.
Positions of 2 are A377287.
For perfect powers we have A377432.
For squarefree we have A373198.
A000015 gives the least prime power >= n, difference A377282.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A024619 and A361102 list the non prime powers, differences A375708 and A375735.
A031218 gives the greatest prime power <= n, difference A276781.
A046933(n) counts the interval from A008864(n) to A006093(n+1).
A246655 lists the prime powers not including 1.
A366835 counts primes between prime powers.

Programs

  • Mathematica
    With[{upto=1000},Map[Length,Most[Split[PrimePi[Select[Range[upto],PrimePowerQ]]]]]] (* Considers prime powers up to 1000 *)

Formula

a(n) = A080101(n) + 1. - Gus Wiseman, Jan 09 2025

A378035 Greatest perfect power < prime(n).

Original entry on oeis.org

1, 1, 4, 4, 9, 9, 16, 16, 16, 27, 27, 36, 36, 36, 36, 49, 49, 49, 64, 64, 64, 64, 81, 81, 81, 100, 100, 100, 100, 100, 125, 128, 128, 128, 144, 144, 144, 144, 144, 169, 169, 169, 169, 169, 196, 196, 196, 216, 225, 225, 225, 225, 225, 243, 256, 256, 256, 256
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2024

Keywords

Comments

Perfect powers (A001597) are 1 and numbers with a proper integer root, complement A007916.

Examples

			The first number line below shows the perfect powers.
The second shows each positive integer k at position prime(k).
-1-----4-------8-9------------16----------------25--27--------32------36----
===1=2===3===4=======5===6=======7===8=======9==========10==11==========12==
		

Crossrefs

Restriction of A081676 to the primes.
Positions of last appearances are also A377283.
A version for squarefree numbers is A378032.
The opposite is A378249 (run lengths A378251), restriction of A377468 to the primes.
The union is A378253.
Terms appearing exactly once are A378355.
Run lengths are A378356, first differences of A377283, complement A377436.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect powers, differences A053289.
A007916 lists the nonperfect powers, differences A375706.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A080769 counts primes between perfect powers, prime powers A067871.
A131605 lists perfect powers that are not prime powers.
A377432 counts perfect powers between primes, zeros A377436, postpositives A377466.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Table[NestWhile[#-1&,Prime[n],radQ[#]&],{n,100}]
  • PARI
    a(n) = my(k=prime(n)-1); while (!(ispower(k) || (k==1)), k--); k; \\ Michel Marcus, Nov 25 2024
    
  • Python
    from sympy import mobius, integer_nthroot, prime
    def A378035(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(x-1+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        m = (p:=prime(n)-1)-f(p)
        return bisection(lambda x:f(x)+m,m,m) # Chai Wah Wu, Nov 25 2024

A378251 Number of primes between consecutive perfect powers, zeros omitted.

Original entry on oeis.org

2, 2, 2, 3, 2, 4, 3, 4, 3, 5, 1, 3, 5, 5, 3, 1, 5, 1, 7, 5, 2, 4, 6, 7, 7, 5, 2, 6, 9, 8, 7, 8, 9, 8, 8, 6, 4, 9, 10, 9, 10, 7, 2, 9, 12, 11, 12, 6, 5, 9, 12, 11, 3, 10, 8, 2, 13, 15, 10, 11, 15, 7, 9, 12, 13, 11, 12, 17, 2, 11, 16, 16, 13, 17, 15, 14, 16, 15
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2024

Keywords

Comments

First differences of A377283 and A378365. Run-lengths of A378035 and A378249.
Perfect powers (A001597) are 1 and numbers with a proper integer root, complement A007916.

Examples

			The first number line below shows the perfect powers. The second shows each prime. To get a(n) we count the primes between consecutive perfect powers, skipping the cases where there are none.
-1-----4-------8-9------------16----------------25--27--------32------36----
===2=3===5===7======11==13======17==19======23==========29==31==========37==
		

Crossrefs

Same as A080769 with 0's removed (which were at positions A274605).
First differences of A377283 and A378365 (union of A378356).
Run-lengths of A378035 (union A378253) and A378249 (union A378250).
The version for nonprime prime powers is A378373, with zeros A067871.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect powers, differences A053289, run-lengths of A377468.
A007916 lists the non-perfect powers, differences A375706.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A131605 lists perfect powers that are not prime powers.
A377432 counts perfect powers between primes, see A377434, A377436, A377466.

Programs

  • Maple
    N:= 10^6: # to use perfect powers up to N
    PP:= {1,seq(seq(i^j,j=2..ilog[i](N)),i=2..isqrt(N))}:
    PP:= sort(convert(PP,list)):
    M:= map(numtheory:-pi, PP):
    subs(0=NULL, M[2..-1]-M[1..-2]): # Robert Israel, Jan 23 2025
  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Length/@Split[Table[NestWhile[#+1&,Prime[n],radQ[#]&],{n,100}]]

A366835 In the pair (A246655(n), A246655(n+1)), how many primes are there?

Original entry on oeis.org

2, 1, 1, 2, 1, 0, 1, 2, 1, 1, 2, 2, 1, 0, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2
Offset: 1

Views

Author

Paolo Xausa, Oct 25 2023

Keywords

Comments

First 0 terms appear at n = 6, 14, 41, 359, 3589, corresponding to consecutive prime powers (8,9), (25,27), (121,125), (2187,2197) and (32761,32768), respectively (cf. A068315 and A068435).
There cannot be primes strictly between consecutive prime powers, so we get the same result considering the whole interval (not just the pair). - Gus Wiseman, Dec 25 2024

Examples

			a(1) = 2 because in the first prime power pair (2 and 3) there are two primes.
a(14) = 0 because in the 14th prime power pair (25 and 27) there are no primes.
		

Crossrefs

For perfect powers instead of prime powers we have A080769.
Positions of 1 are A379155, indices of A379157.
Positions of 0 are A379156, indices of A068315.
Positions of 2 are A379158, indices of A379541.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A031218 gives the greatest prime power <= n.
A065514 gives the greatest prime power < prime(n), difference A377289.
A080101 and A366833 count prime powers between primes, see A053607, A304521.
A246655 lists the prime powers, differences A057820.

Programs

  • Mathematica
    With[{upto=500},Map[Count[#,_?PrimeQ]&,Partition[Select[Range[upto],PrimePowerQ],2,1]]] (* Considers prime powers up to 500 *)
  • PARI
    lista(nn) = my(v=[p| p <- [1..nn], isprimepower(p)]); vector(#v-1, k, isprime(v[k]) + isprime(v[k+1])); \\ Michel Marcus, Oct 26 2023

A378355 Numbers appearing exactly once in A378035 (greatest perfect power < prime(n)).

Original entry on oeis.org

125, 216, 243, 64000, 1295029, 2535525316, 542939080312
Offset: 1

Views

Author

Gus Wiseman, Nov 26 2024

Keywords

Comments

These are perfect-powers p such that the interval from p to the next perfect power contains a unique prime.
Is this sequence infinite? See A178700.

Examples

			We have 125 because 127 is the only prime between 125 and 128.
		

Crossrefs

The next prime is A178700.
Singletons in A378035 (union A378253), restriction of A081676.
The next perfect power is A378374.
Swapping primes and perfect powers gives A379154, unique case of A377283.
A000040 lists the primes, differences A001223.
A001597 lists the perfect powers, differences A053289.
A007916 lists the not perfect powers, differences A375706.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A377432 counts perfect powers between primes, see A377434, A377436, A377466.
A378249 gives least perfect power > prime(n) (run-lengths A378251), restrict of A377468.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    y=Table[NestWhile[#-1&,Prime[n],radQ[#]&],{n,1000}];
    Select[Union[y],Count[y,#]==1&]

Formula

A151800(a(n)) = A178700(n).

A379155 Numbers k such that there is a unique prime between the k-th and (k+1)-th prime powers (A246655).

Original entry on oeis.org

2, 3, 5, 7, 9, 10, 13, 15, 17, 18, 22, 23, 26, 27, 31, 32, 40, 42, 43, 44, 52, 53, 67, 68, 69, 70, 77, 78, 85, 86, 90, 91, 116, 117, 119, 120, 135, 136, 151, 152, 169, 170, 186, 187, 197, 198, 243, 244, 246, 247, 291, 292, 312, 313, 339, 340, 358, 360, 362
Offset: 1

Views

Author

Gus Wiseman, Dec 22 2024

Keywords

Comments

Numbers k such that exactly one of A246655(k) and A246655(k+1) is prime. - Robert Israel, Jan 22 2025
The prime powers themselves are: 3, 4, 7, 9, 13, 16, 23, 27, 31, 32, 47, 49, 61, 64, ...

Examples

			The 4th and 5th prime powers are 5 and 7, with interval (5,6,7) containing two primes, so 4 is not in the sequence.
The 13th and 14th prime powers are 23 and 25, with interval (23,24,25) containing only one prime, so 13 is in the sequence.
The 18th and 19th prime powers are 32 and 37, with interval (32,33,34,35,36,37) containing just one prime 37, so 18 is in the sequence.
		

Crossrefs

These are the positions of 1 in A366835, for perfect powers A080769.
For perfect powers instead of prime powers we have A378368.
For no primes we have A379156, for perfect powers A274605.
The prime powers themselves are A379157, for previous A175106.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime power <= n.
A065514 gives the greatest prime power < prime(n), difference A377289.
A246655 lists the prime powers.
A366833 counts prime powers between primes, see A053607, A304521.

Programs

  • Maple
    N:= 1000: # for terms k where A246655(k+1) <+ N
    P:= select(isprime,[2,seq(i,i=3..N,2)]):
    S:= convert(P,set):
    for p in P while p^2 <= N do
      S:= S union {seq(p^j,j=2..ilog[p](N))}
    od:
    PP:= sort(convert(S,list)):
    state:= 1: Res:= NULL:
    ip:= 2:
    for i from 2 to nops(PP) do
      if PP[i] = P[ip] then
        if state = 0 then Res:= Res,i-1 fi;
        state:= 1;
        ip:= ip+1;
      else
        if state = 1 then Res:= Res,i-1 fi;
        state:= 0;
      fi
    od:
    Res; # Robert Israel, Jan 22 2025
  • Mathematica
    v=Select[Range[100],PrimePowerQ];
    Select[Range[Length[v]-1],Length[Select[Range[v[[#]],v[[#+1]]],PrimeQ]]==1&]

Formula

A246655(a(n)) = A379157(n).

A068315 For numbers k such that A025474(k) > 1 and A025474(k+1) > 1, sequence gives A000961(k).

Original entry on oeis.org

8, 25, 121, 2187, 32761
Offset: 1

Views

Author

Naohiro Nomoto, Mar 08 2002

Keywords

Comments

Equivalently, prime powers (either A000961 or A246655) q such that q and the next prime power are both composite numbers. - Paolo Xausa, Oct 25 2023

Examples

			The interval (121,122,123,124,125) contains no primes, so 121 is in the sequence. - _Gus Wiseman_, Dec 24 2024
		

Crossrefs

Bisection of A068435.
For perfect powers instead of prime powers we have A116086, indices A274605.
The position of a(k) in the prime powers A246655 is A379156(k).
For just one prime we have A379157, indices A379155.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A031218 gives the greatest prime power <= n.
A046933 gives run-lengths of composites between primes.
A065514 gives the greatest prime power < prime(n), difference A377289.
A246655 lists the prime powers, differences A057820.
A366833 counts prime powers between primes, see A053607, A304521.
A366835 counts primes between prime powers.

Programs

  • Mathematica
    With[{upto=33000},Map[First,Select[Partition[Select[Range[upto],PrimePowerQ],2,1],NoneTrue[#,PrimeQ]&]]] (* Paolo Xausa, Oct 25 2023 *)

Formula

a(n) = A246655(A379156(n)). - Gus Wiseman, Dec 24 2024

Extensions

Definition corrected by Jinyuan Wang, Sep 05 2020

A068435 Consecutive prime powers without a prime between them.

Original entry on oeis.org

8, 9, 25, 27, 121, 125, 2187, 2197, 32761, 32768
Offset: 1

Views

Author

Jon Perry, Mar 09 2002

Keywords

Comments

From David A. Corneth, Aug 24 2019: (Start)
Only 5 pairs are known up to 4*10^18. Legendre's conjecture states that there is a prime number between n^2 and (n + 1)^2 for every positive integer n. The conjecture has been verified up to n = 2*10^9. So to that bound we only have to check for two prime powers where at least one has an exponent of at least 3. That has been done to prime powers <= 10^22.
If there is another pair besides the first five listed with both numbers <= 10^22 then Legendre's conjecture is false.
Proof: If there is another such pair with both numbers <= 10^22 then it must be of the form [p^2, q^2] where p is a prime and q is the least prime larger than p. Then q - p >= 2 (as p != 2). So there is no prime between p^2 and q^2 and hence there is no prime between p^2 and (p+1)^2. This is a counterexample to Legendre's conjecture. (End)

Examples

			8 = 2^3, 9 = 3^2, there is no prime between 8 and 9.
25 = 5^2, 27 = 3^3, there is no prime between 25 and 27.
		

Crossrefs

Cf. A116086 and A116455 (for perfect powers, but not necessarily prime powers).

Programs

  • Mathematica
    With[{upto=33000},Select[Partition[Select[Range[upto],PrimePowerQ],2,1],NoneTrue[#,PrimeQ]&]] (* Paolo Xausa, Oct 29 2023 *)
  • PARI
    ispp(x) = !isprime(x) && isprimepower(x);
    lista(nn=50000) = {my(prec = 0); for (i=1, nn, if (ispp(i), if (! prec, prec = i, if (primepi(i) == primepi(prec), print1(prec, ", ", i, ", ")); prec = i;);););} \\ Michel Marcus, Aug 24 2019

A379157 Prime powers p such that the interval from p to the next prime power contains a unique prime number.

Original entry on oeis.org

3, 4, 7, 9, 13, 16, 23, 27, 31, 32, 47, 49, 61, 64, 79, 81, 113, 125, 127, 128, 167, 169, 241, 243, 251, 256, 283, 289, 337, 343, 359, 361, 509, 512, 523, 529, 619, 625, 727, 729, 839, 841, 953, 961, 1021, 1024, 1327, 1331, 1367, 1369, 1669, 1681, 1847, 1849
Offset: 1

Views

Author

Gus Wiseman, Dec 22 2024

Keywords

Examples

			The next prime power after 32 is 37, with interval (32,33,34,35,36,37) containing just one prime 37, so 32 is in the sequence.
		

Crossrefs

For no primes we have A068315/A379156, for perfect powers A116086/A274605.
The previous instead of next prime power we have A175106.
For perfect powers instead of prime powers we have A378355.
The positions of these prime powers (in A246655) are A379155.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime power <= n.
A065514 gives the greatest prime power < prime(n), difference A377289.
A246655 lists the prime powers.
A366833 counts prime powers between primes, see A053607, A304521.
A366835 counts primes between prime powers, for perfect powers A080769.

Programs

  • Mathematica
    v=Select[Range[100],PrimePowerQ]
    nextpripow[n_]:=NestWhile[#+1&,n+1,!PrimePowerQ[#]&]
    Select[v,Length[Select[Range[#,nextpripow[#]],PrimeQ]]==1&]

Formula

a(n) = A246655(A379155(n)).

A378253 Perfect powers p such that there are no other perfect powers between p and the least prime > p.

Original entry on oeis.org

1, 4, 9, 16, 27, 36, 49, 64, 81, 100, 125, 128, 144, 169, 196, 216, 225, 243, 256, 289, 324, 343, 361, 400, 441, 484, 512, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1000, 1024, 1089, 1156, 1225, 1296, 1331, 1369, 1444, 1521, 1600, 1681, 1728, 1764, 1849
Offset: 1

Views

Author

Gus Wiseman, Nov 26 2024

Keywords

Comments

Perfect powers (A001597) are 1 and numbers with a proper integer root, complement A007916.
Each term is the greatest perfect power < prime(k) for some k.

Examples

			The first number line below shows the perfect powers. The second shows each prime. To get a(n), we take the last perfect power in each interval between consecutive primes, omitting the cases where there are none.
-1-----4-------8-9------------16----------------25--27--------32------36----
===2=3===5===7======11==13======17==19======23==========29==31==========37==
		

Crossrefs

Union of A378035, restriction of A081676 to the primes.
The opposite is A378250, union of A378249 (run-lengths A378251).
A000040 lists the primes, differences A001223.
A001597 lists the perfect powers, differences A053289.
A007916 lists the non-perfect powers, differences A375706.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A080769 counts primes between perfect powers.
A377283 ranks perfect powers between primes, differences A378356.
A377432 counts perfect powers between primes, see A377434, A377436, A377466.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Union[Table[NestWhile[#-1&,Prime[n],radQ[#]&],{n,1000}]]
Showing 1-10 of 16 results. Next