cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A068186 a(n) is the largest number whose product of decimal digits equals n^n.

Original entry on oeis.org

22, 333, 22222222, 55555, 333333222222, 7777777, 222222222222222222222222, 333333333333333333, 55555555552222222222, 0, 333333333333222222222222222222222222, 0, 7777777777777722222222222222
Offset: 2

Views

Author

Labos Elemer, Feb 19 2002

Keywords

Comments

No digit=1 is permitted to avoid infinite number of solutions; a(n)=0 if A067734(n^n)=0.

Examples

			n=10, 10^10=10000000000, a(5)=55555555552222222222.
		

Crossrefs

Programs

  • Python
    from sympy import factorint
    def A068186(n):
        if n == 1:
            return 1
        pf = factorint(n)
        ps = sorted(pf.keys(),reverse=True)
        if ps[0] > 7:
            return 0
        s = ''
        for p in ps:
            s += str(p)*(n*pf[p])
        return int(s) # Chai Wah Wu, Aug 12 2017

Formula

a(n) is obtained as prime factors of n^n concatenated in order of magnitude and with repetitions; a(n)=0 if n has p > 7 prime factors.

Extensions

a(12) corrected by Chai Wah Wu, Aug 12 2017

A068190 Largest number whose digit product equals n; a(n)=0 if no such number exists, e.g., when n has a prime factor larger than 7; no digit=1 is permitted to avoid an infinite number of solutions.

Original entry on oeis.org

0, 2, 3, 22, 5, 32, 7, 222, 33, 52, 0, 322, 0, 72, 53, 2222, 0, 332, 0, 522, 73, 0, 0, 3222, 55, 0, 333, 722, 0, 532, 0, 22222, 0, 0, 75, 3322, 0, 0, 0, 5222, 0, 732, 0, 0, 533, 0, 0, 32222, 77, 552, 0, 0, 0, 3332, 0, 7222, 0, 0, 0, 5322, 0, 0, 733, 222222, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Labos Elemer, Feb 19 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Array[If[#[[-1, 1]] > 7, 0, FromDigits@ Reverse@ Flatten@ Map[ConstantArray[#1, #2] & @@ # &, #]] &@ FactorInteger@ # &, 69] /. 1 -> 0 (* Michael De Vlieger, Dec 08 2018 *)
  • PARI
    a(n) = {my(res = []); for(i=2, 9, v = valuation(n, i); if(v > 0, res = concat(vector(v, j, i), res); n/=i^v)); if(n==1,fromdigits(res), 0)} \\ David A. Corneth, Jul 31 2017

Formula

If a solution exists, a(n) is the concatenation of prime factors with repetitions and in order of magnitude, otherwise a(n)=0.

Extensions

a(36) corrected by David A. Corneth, Jul 31 2017

A084891 Multiples of 2, 3, 5, or 7, but not 7-smooth.

Original entry on oeis.org

22, 26, 33, 34, 38, 39, 44, 46, 51, 52, 55, 57, 58, 62, 65, 66, 68, 69, 74, 76, 77, 78, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 99, 102, 104, 106, 110, 111, 114, 115, 116, 117, 118, 119, 122, 123, 124, 129, 130, 132, 133, 134, 136, 138, 141, 142, 145, 146
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 13 2003

Keywords

Comments

Intersection of A068191 with (A005843, A008585, A008587 and A008589); union of (A005843, A008585, A008587 and A008589) without A002473.
A020639(a(n)) <= 7, A006530(a(n)) > 7.

Crossrefs

Programs

  • Mathematica
    okQ[n_] := AnyTrue[{2, 3, 5, 7}, Divisible[n, #]&] && FactorInteger[n][[-1, 1]] > 7;
    Select[Range[1000], okQ] (* Jean-François Alcover, Oct 15 2021 *)
  • PARI
    mult2357(m,n) = \\ mult 2,3,5,7 not 7 smooth
    {
    local(x,a,j,f,ln);
    for(x=m,n,
    f=0;
    if(gcd(x,210)>1,
    a = ifactor(x);
    for(j=1,length(a),
    if(a[j]>7,f=1;break);
    );
    if(f,print1(x","));
    );
    );
    }
    ifactor(n) = \\ The vector of the prime factors of n with multiplicity.
    {
    local(f,j,k,flist);
    flist=[];
    f=Vec(factor(n));
    for(j=1,length(f[1]),
    for(k = 1,f[2][j],flist = concat(flist,f[1][j])
    );
    );
    return(flist)
    }
    \\ Cino Hilliard, Jul 03 2009
    
  • Python
    from sympy import primefactors
    def ok(n):
        pf = set(primefactors(n))
        return pf & {2, 3, 5, 7} and pf - {2, 3, 5, 7}
    print(list(filter(ok, range(147)))) # Michael S. Branicky, Oct 15 2021

A198375 Smallest n-digit number whose product of digits is n or 0 if no number exists.

Original entry on oeis.org

1, 12, 113, 1114, 11115, 111116, 1111117, 11111118, 111111119, 1111111125, 0, 111111111126, 0, 11111111111127, 111111111111135, 1111111111111128, 0, 111111111111111129, 0, 11111111111111111145, 111111111111111111137, 0, 0, 111111111111111111111138
Offset: 1

Views

Author

Jaroslav Krizek, Oct 23 2011

Keywords

Examples

			113, 131, and 311 are the 3-digit numbers whose product of digits is 3; 113 is the smallest.
		

Crossrefs

Cf. A198376 (largest), A002473, A068191.

Programs

  • Mathematica
    Table[If[FactorInteger[n][[-1, 1]] > 9, 0, i = (10^n - 1)/9; While[i < 10^n && Times @@ IntegerDigits[i] != n, i++]; If[i == 10^n, 0, i]], {n, 30}] (* T. D. Noe, Oct 24 2011 *)
  • Python
    def A198375(n): return int(str(A198376(n))[::-1])
    print([A198375(n) for n in range(1, 25)]) # Michael S. Branicky, Jan 21 2021

Formula

a(A068191(n)) = 0 for n >=1.
a(n) <> 0 iff n in { A002473 }. - Michael S. Branicky, Jan 21 2021

A191599 Numbers k that do not divide Ramanujan's tau(k).

Original entry on oeis.org

11, 13, 17, 19, 22, 23, 26, 29, 31, 33, 34, 37, 38, 39, 41, 43, 44, 46, 47, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 89, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 109, 110, 111, 113, 114
Offset: 1

Views

Author

Luis H. Gallardo, Jun 08 2011

Keywords

Comments

This sequence has its first 45 terms in common with A068191.
Subsequence of A068191.
Complement of A063938. - Omar E. Pol, Aug 28 2011

Examples

			For n=1, a(1)=11 since 11 does not divide tau(11) = 534612.
		

Crossrefs

Programs

  • Maple
    with(numtheory): tn := proc(n) modp(-840*sum(k^4*sigma(k)*sigma(n-k),k=1..n-1),n); end; ser := proc(a,b) local n,lis; lis := []; for n from a to b do if tn(n) <> 0 then lis := [op(lis),n]; fi; od; lis; end;
  • Mathematica
    Select[Range[120], !Divisible[RamanujanTau[#], #]&] (* Jean-François Alcover, Nov 29 2017 *)
  • PARI
    isok(k) = ramanujantau(k) % k; \\ Michel Marcus, Aug 14 2021

A198376 Largest n-digit number whose product of digits is n or 0 if no such number exists.

Original entry on oeis.org

1, 21, 311, 4111, 51111, 611111, 7111111, 81111111, 911111111, 5211111111, 0, 621111111111, 0, 72111111111111, 531111111111111, 8211111111111111, 0, 921111111111111111, 0, 54111111111111111111, 731111111111111111111, 0, 0, 831111111111111111111111
Offset: 1

Views

Author

Jaroslav Krizek, Oct 23 2011

Keywords

Examples

			113, 131, and 311 are the 3-digit numbers whose product of digits is 3; 311 is the largest.
		

Crossrefs

Cf. A198375 (smallest), A002473, A068191.

Programs

  • Mathematica
    Table[If[FactorInteger[n][[-1, 1]] > 9, 0, i = (10^n - 1)/9; While[i < 10^n && Times @@ (d = IntegerDigits[i]) != n, i++]; If[i == 10^n, 0, FromDigits[Reverse[d]]]], {n, 30}] (* T. D. Noe, Oct 24 2011 *)
  • Python
    def A198376(n):
      ncopy, p, an = n, 1, ""
      for d in range(9, 1, -1):
        while ncopy%d == 0: ncopy//=d; p *= d; an += str(d)
      if p == n and len(an) <= n: return int(an+'1'*(n-len(an)))
      return 0
    print([A198376(n) for n in range(1, 25)]) # Michael S. Branicky, Jan 21 2021

Formula

a(A068191(n)) = 0 for n >=1.
a(n) <> 0 iff n in { A002473 }. - Michael S. Branicky, Jan 21 2021

A373641 The number of positive n-digit integers whose digit product is n.

Original entry on oeis.org

1, 2, 3, 10, 5, 36, 7, 120, 45, 90, 0, 924, 0, 182, 210, 3860, 0, 3060, 0, 3800, 420, 0, 0, 61824, 300, 0, 3627, 10584, 0, 25230, 0, 375968, 0, 0, 1190, 441000, 0, 0, 0, 426400, 0, 70602, 0, 0, 44550, 0, 0, 11936496, 1176, 58800, 0, 0, 0, 1491102, 0, 1638560
Offset: 1

Views

Author

Graham Holmes, Jun 12 2024

Keywords

Comments

Trivially, for the four single-digit primes p, a(p)=p.
It's not possible by definition to have a digit product equal to a prime number greater than 10, so a(p)=0 for prime p > 10.

Examples

			a(4) = 10: 1114, 1122, 1141, 1212, 1221, 1411, 2112, 2121, 2211, 4111.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t, i) option remember; `if`(n=1, 1/t!, `if`(i<2, 0,
          add(b(n/i^j, t-j, i-1)/j!, j=0..padic[ordp](n, i))))
        end:
    a:= n-> n!*b(n$2, 9):
    seq(a(n), n=1..56);  # Alois P. Heinz, Jun 12 2024

Formula

a(n) = 0 <=> n in { A068191 }.
a(n) > 0 <=> n in { A002473 }.
a(n) = A163767(n) for n <= 9.

A376740 Numbers that have at least one two-digit prime factor.

Original entry on oeis.org

11, 13, 17, 19, 22, 23, 26, 29, 31, 33, 34, 37, 38, 39, 41, 43, 44, 46, 47, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 97, 99, 102, 104, 106, 110, 111, 114, 115, 116, 117
Offset: 1

Views

Author

Kishin Ikemoto, Oct 03 2024

Keywords

Comments

Subsequence of A068191, first differing at A068191(55) = 101 which is not a term here.
Numbers k such that gcd(k,10978895066407230594062391177770267) > 1. - Chai Wah Wu, Nov 18 2024 [The big number is A109819(10) - Alois P. Heinz, Nov 18 2024]
The asymptotic density of this sequence is A051953(A109819(10))/A109819(10) = 1329644281346285477858013527/2807455661493975149742813527 = 0.473611... . - Amiram Eldar, Nov 19 2024

Examples

			201 = 3*67 is in this sequence because it has one two-digit prime factor.
202 = 2*101 is not, because neither of them is two-digit.
		

Crossrefs

Programs

  • Maple
    q:= convert(select(isprime, [seq(i,i=11 .. 99, 2)]),`*`):
    filter:= n -> igcd(n,q) > 1:
    select(filter, [$1..200]); # Robert Israel, Nov 18 2024
  • Mathematica
    A376740Q[k_] := GCD[k, 10978895066407230594062391177770267] > 1;
    Select[Range[200], A376740Q] (* Paolo Xausa, Jun 24 2025 *)
  • PARI
    is(k) = {forprime(p = 11, 97, if(!(k % p), return(1))); 0;} \\ Amiram Eldar, Nov 19 2024
  • Python
    def ok(n): return any(n%p == 0 for p in [11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97])
    print([k for k in range(1, 118) if ok(k)]) # Michael S. Branicky, Oct 15 2024
    

Formula

a(n + A051953(A109819(10))) = a(n) + A109819(10). - Amiram Eldar, Nov 19 2024
Previous Showing 11-18 of 18 results.