cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 39 results. Next

A158623 Denominator of the reduced fraction A158620(n)/A158621(n).

Original entry on oeis.org

9, 18, 10, 45, 63, 28, 108, 135, 55, 198, 234, 91, 315, 360, 136, 459, 513, 190, 630, 693, 253, 828, 900, 325, 1053, 1134, 406, 1305, 1395, 496, 1584, 1683, 595, 1890, 1998, 703, 2223, 2340, 820, 2583, 2709, 946, 2970, 3105, 1081, 3384, 3528, 1225, 3825
Offset: 2

Views

Author

Jonathan Vos Post, Mar 23 2009

Keywords

Comments

A158620(n) = Product_{k=2..n} (k^3-1). A158621(n) = Product_{k=2..n} (k^3+1). A158622(n) is the numerator of the reduced fraction A158620(n)/A158621(n). A158623(n) is the denominator of the reduced fraction A158620(n)/A158621(n). The reduced fractions are 7/9, 13/18, 7/10, 31/45, 43/63, 19/28, 73/108, 91/135, 37/55, 133/198, ...

Examples

			a(2) = 9 = denominator of (2^3-1)/2^3+1 = 7/9. a(3) = 18 = denominator of ((2^3-1)*(3^3-1))/((2^3+1)*(3^3+1)) = (7 * 26)/ (9 * 28) = 182/252 = 13/18. a(4) = 10 = denominator of ((2^3-1)*(3^3-1)*(4^3-1))/((2^3+1)*(3^3+1)*(4^3+1)) = (7 * 26 * 63)/(9 * 28 * 65) = 11466/16380 = 7/10. a(5) = 45 = denominator of ((2^3-1)(3^3-1)(4^3-1)(5^3-1))/((2^3+1)(3^3+1)(4^3+1)(5^3+1)) = 1421784/2063880 = 31/45.
		

Crossrefs

Programs

Formula

Denominator of (Product_{k=2..n} (k^3-1)) / Product_{k=2..n} (k^3+1) = denominator of Product_{k=2..n} A068601(k)/A001093(k).
A158620(n)/A158621(n) = 2(n^2+n+1)/(3n(n+1)). Conjecture: a(n) = 3a(n-3) - 3a(n-6) + a(n-9), so trisections are A152996, A060544 and 3*A081266. - R. J. Mathar, Mar 27 2009
Empirical g.f.: -x^2*(x^8 - 2*x^5 + 9*x^4 + 18*x^3 + 10*x^2 + 18*x + 9) / ((x-1)^3*(x^2 + x + 1)^3). - Colin Barker, May 09 2013

Extensions

More terms from R. J. Mathar, Mar 27 2009

A340242 Square array read by upward antidiagonals: T(n,k) is the number of n-ary strings of length k containing 000.

Original entry on oeis.org

1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 47, 1, 11, 65, 208, 295, 107, 1, 13, 96, 425, 1021, 1037, 238, 1, 15, 133, 756, 2621, 4831, 3555, 520, 1, 17, 176, 1225, 5611, 15569, 22276, 11961, 1121, 1, 19, 225, 1856, 10627, 40091, 90085, 100768, 39667, 2391
Offset: 2

Views

Author

Robert P. P. McKone, Jan 01 2021

Keywords

Examples

			For n = 4 and k = 5, there are 40 strings: {00000, 00001, 00002, 00003, 00010, 00011, 00012, 00013, 00020, 00021, 00022, 00023, 00030, 00031, 00032, 00033, 01000, 02000, 03000, 10000, 10001, 10002, 10003, 11000, 12000, 13000, 20000, 20001, 20002, 20003, 21000, 22000, 23000, 30000, 30001, 30002, 30003, 31000, 32000, 33000}.
Square table T(n,k):
      k=3: k=4:  k=5:   k=6:    k=7:     k=8:
n=2:    1    3     8     20      47      107
n=3:    1    5    21     81     295     1037
n=4:    1    7    40    208    1021     4831
n=5:    1    9    65    425    2621    15569
n=6:    1   11    96    756    5611    40091
n=7:    1   13   133   1225   10627    88717
n=8:    1   15   176   1856   18425   175967
n=9:    1   17   225   2673   29881   321281
		

Crossrefs

Rows: A050231 (n=2), A231430 (n=3).
Columns: A000567 (k=5), A103532 (k=6).
Cf. A340156 (containing 00).
Cf. A341050.

Programs

  • Mathematica
    m[r_] := Normal[With[{p = 1/n}, SparseArray[{Band[{1, 2}] -> p, {i_, 1} /; i <= r -> 1 - p, {r + 1, r + 1} -> 1}]]];
    T[n_, k_, r_] := MatrixPower[m[r], k][[1, r + 1]]*n^k;
    Reverse[Table[T[n, k - n + 3, 3], {k, 2, 11}, {n, 2, k}], 2] // Flatten
  • PARI
    my(x2='x^2+'x+1); T(n,k) = n^k - polcoeff(lift(x2*Mod('x, 'x^3-(n-1)*x2)^k), 2); \\ Kevin Ryde, Jan 02 2021

Formula

m(3) = [1 - 1/n, 1/n, 0, 0; 1 - 1/n, 0, 1/n, 0; 1 - 1/n, 0, 0, 1/n; 0, 0, 0, 1], is the probability/transition matrix for three consecutive "0" -> "containing 000".

A088036 Numbers k such that k^3 - 1 is divisible by a cube other than 1.

Original entry on oeis.org

9, 10, 17, 18, 19, 25, 28, 33, 37, 41, 46, 49, 55, 57, 64, 65, 73, 81, 82, 89, 91, 97, 100, 105, 109, 113, 118, 121, 126, 127, 129, 136, 137, 145, 153, 154, 161, 163, 169, 172, 177, 181, 185, 190, 193, 199, 201, 208, 209, 217, 225, 226, 233, 235, 241, 244, 249
Offset: 1

Views

Author

Amarnath Murthy, Sep 19 2003

Keywords

Crossrefs

Programs

Extensions

Corrected and extended by Ray Chandler, Sep 23 2003
Definition clarified by Harvey P. Dale, Oct 05 2017

A128972 n^3 - 1 divided by its largest cube divisor.

Original entry on oeis.org

7, 26, 63, 124, 215, 342, 511, 91, 37, 1330, 1727, 2196, 2743, 3374, 4095, 614, 17, 254, 7999, 9260, 10647, 12166, 13823, 1953, 17575, 19682, 813, 24388, 26999, 29790, 32767, 4492, 39303, 42874, 46655, 1876, 54871, 59318, 63999, 8615, 74087, 79506
Offset: 2

Views

Author

Jonathan Vos Post, Apr 28 2007

Keywords

Comments

In other words, cubefree part of n^3-1, or cubefree kernel of n^3-1. Cube analog of A068310.

Examples

			a(9) = (9^3-1)/8 = (2^3 * 7 * 13)/(2^3) = 728/8 = 91.
a(10) = (10^3-1)/27 = (3^3 * 37)/(3^3) = 999/27 = 37.
a(18) = (18^3-1)/343 = (7^3 * 17)/(7^3) = 5831/343 = 17.
		

Crossrefs

Programs

  • Maple
    a:= n -> mul(f[1]^(f[2] mod 3), f = ifactors(n^3-1)[2]):
    seq(a(n),n=2..100); # Robert Israel, Sep 24 2014

Formula

a(n) = A062378(A068601(n)) = A062378(n^3-1).

Extensions

More terms from Carl R. White, Nov 09 2010

A135300 Positive X-values of solutions to the equation 1!*X^4 - 2!*(X + 1)^3 + 3!*(X + 2)^2 - (4^2)*(X + 3) + 5^2 = Y^3.

Original entry on oeis.org

1, 7, 26, 63, 124, 215, 342, 511, 728, 999, 1330, 1727, 2196, 2743, 3374, 4095, 4912, 5831, 6858, 7999, 9260, 10647, 12166, 13823, 15624, 17575, 19682, 21951, 24388, 26999, 29790, 32767, 35936, 39303, 42874
Offset: 1

Views

Author

Mohamed Bouhamida, Dec 04 2007

Keywords

Comments

To prove that X = 1 or X = n^3 - 1: Y^3 = 1!*X^4 - 2!*(X + 1)^3 + 3!*(X + 2)^2 - (4^2)*(X + 3) + 5^2 = X^4 - 2*(X + 1)^3 + 6*(X + 2)^2 - 16(X + 3) + 25 = X^4 - 2*X^3 + 2X - 1 = (X + 1)(X^3 - 3*X^2 + 3X - 1) = (X + 1)*(X - 1)^3, which means that X = 1 or (X + 1) must be a cube, so (X, Y) = (1, 0) or (X, Y) = (n^3 - 1, n(n^3 - 2)) with n >= 2.
Apart from the first term, the same as A068601. - R. J. Mathar, Apr 29 2008

Crossrefs

Programs

Formula

a(1) = 1 and a(n) = n^3 - 1 with n >= 2.
G.f.: x*(1 + 3*x + 4*x^2 - 3*x^3 + x^4)/(1-x)^4. - Colin Barker, Oct 25 2012
E.g.f.: (1 + x)*(1 - exp(x)*(1 - 2*x - x^2)). - Stefano Spezia, Apr 22 2023

A365373 a(n) = n*(3*n^4 + 15*n^3 + 25*n^2 - 15*n - 28)/60.

Original entry on oeis.org

0, 0, 7, 40, 136, 356, 791, 1568, 2856, 4872, 7887, 12232, 18304, 26572, 37583, 51968, 70448, 93840, 123063, 159144, 203224, 256564, 320551, 396704, 486680, 592280, 715455, 858312, 1023120, 1212316, 1428511, 1674496, 1953248, 2267936, 2621927, 3018792, 3462312
Offset: 0

Views

Author

Stefano Spezia, Sep 02 2023

Keywords

Crossrefs

Antidiagonal sums of A365372.
Cf. A068601 (2nd differences).

Programs

  • Mathematica
    a[n_]:= n*(3*n^4 + 15*n^3 + 25*n^2 - 15*n - 28)/60; Array[a,37,0]
  • Python
    def A365373(n): return n*(n*(n*(n*(3*n + 15) + 25) - 15) - 28)//60 # Chai Wah Wu, Sep 04 2023

Formula

a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 5.
O.g.f.: x^2*(7 - 2*x + x^2)/(1 - x)^6.
E.g.f.: exp(x)*x^2*(210 + 190*x + 45*x^2 + 3*x^3)/60.

A385591 Numbers k such that both k^3 - 1 and k^3 + 1 are triprimes.

Original entry on oeis.org

66, 132, 180, 228, 240, 288, 294, 336, 378, 420, 462, 600, 612, 660, 678, 702, 882, 918, 960, 1116, 1164, 1278, 1302, 1320, 1800, 2550, 2562, 3270, 3300, 3372, 3408, 3438, 3822, 3882, 3990, 4050, 4422, 4536, 4812, 5040, 5088, 5208, 5250, 5418, 5748, 5754, 5778, 5838, 6882, 6960, 7128, 7182, 7254
Offset: 1

Views

Author

Robert Israel, Aug 09 2025

Keywords

Comments

Numbers k such that k^3 - 1 and k^3 + 1 each have 3 prime factors, counted with multiplicity.
All terms are divisible by 6.
The Generalized Bunyakovsky Conjecture implies there are infinitely many j such that 6+7*j, 32 + 35*j, 1225 * j^2 + 2205 * j + 993 and 175 * j^2 + 305 * j + 133 are all prime. For such j, 31 + 35*j is a term of the sequence. Thus the conjecture implies the sequence is infinite. The first two such j are 1 and 31, corresponding to a(1) = 66 and a(20) = 1116.

Examples

			a(3) = 180 is a term because 180^3 - 1 = 5831999 = 31 * 179 * 1051 and 5832001 = 7 * 181 * 4603 are each products of 3 primes.
		

Crossrefs

Cf. A001093, A068601, A014612. Intersection of A115403 and A386915.

Programs

  • Maple
    filter:= k -> numtheory:-bigomega(k-1) + numtheory:-bigomega(k^2 + k + 1) = 3 and
    numtheory:-bigomega(k+1) + numtheory:-bigomega(k^2 - k + 1) = 3:
    select(filter, [seq(i,i=6 .. 10000, 6);
  • Mathematica
    Select[Range[7500], PrimeOmega[#^3 - 1] == PrimeOmega[#^3 + 1] == 3 &] (* Amiram Eldar, Aug 10 2025 *)

A386915 Numbers k such that k^3 - 1 is a triprime.

Original entry on oeis.org

4, 5, 15, 27, 32, 42, 44, 48, 50, 59, 60, 66, 72, 75, 78, 84, 98, 104, 108, 114, 119, 132, 140, 143, 147, 152, 162, 167, 174, 180, 182, 188, 200, 203, 206, 212, 215, 218, 224, 228, 234, 236, 240, 252, 258, 264, 266, 270, 279, 288, 290, 294, 308, 318, 336, 338, 342, 350, 374, 378, 383, 384, 390
Offset: 1

Views

Author

Robert Israel, Aug 07 2025

Keywords

Comments

Numbers k such that either k-1 is prime and k^2 + k + 1 is a semiprime, or k-1 is a semiprime and k^2 + k + 1 is prime.
If k is odd, k-1 = 2*p for a prime p such that 4*p^2 + 6*p + 3 is prime. The Generalized Bunyakovsky conjecture implies that there are infinitely many of these.
The Generalized Bunyakovsky conjecture also implies that there are infinitely many j such that 14*j + 3, 28*j^2 + 18*j + 3, 7*j + 2 and 196*j^2 + 154*j + 31 are all prime. This implies that both k = 14*j + 4 and k + 1 are terms of the sequence.
There are no k where k, k + 1 and k + 2 are all terms of the sequence, since there are no terms == 1 (mod 3) except 4 (if k == 1 (mod 3), then k^3 == 1 (mod 9)).

Examples

			a(3) = 15 is a term because 15^3 - 1 = 3374 = 2 * 7 * 241 is the product of three primes.
		

Crossrefs

Programs

  • Maple
    select(t -> numtheory:-bigomega(t^3-1)=3, [$1..1000]);
  • Mathematica
    Select[Range[400], PrimeOmega[#^3 - 1] == 3 &] (* Amiram Eldar, Aug 08 2025 *)
  • PARI
    isok(k) = bigomega(k^3-1) == 3; \\ Michel Marcus, Aug 08 2025

A204767 Quadruples (a,b,c,d) of the form ( n*(n^3-1), n^3-1, 2*n^3+1, n*(n^3+2) ).

Original entry on oeis.org

0, 0, 3, 3, 14, 7, 17, 20, 78, 26, 55, 87, 252, 63, 129, 264, 620, 124, 251, 635, 1290, 215, 433, 1308, 2394, 342, 687, 2415, 4088, 511, 1025, 4112, 6552, 728, 1459, 6579, 9990, 999, 2001, 10020, 14630, 1330, 2663, 14663, 20724, 1727, 3457, 20760, 28548, 2196, 4395, 28587
Offset: 1

Views

Author

Vincenzo Librandi, Mar 04 2012

Keywords

Comments

Four consecutive (a,b,c,d) in the sequence are solutions to a^3+b^3+c^3 = d^3, that is a(4k+1)^3+a(4k+2)^3+a(4k+3)^3 = a(4k+4)^3.
Also, A058895(n)^3 + A068601(n)^3 + A033562(n)^3 = A185065(n)^3.
The sequence corresponds to the case m=1 in the identity (n*(n^3-m^3))^3+(m*(n^3-m^3))^3+(m*(2*n^3+m^3))^3 = (n*(n^3+2*m^3))^3.
G. H. Hardy and E. M. Wright gave this identity in their "An Introduction to the Theory of Numbers" together with (n*(n^3-2*m^3))^3+(m*(n^3+m^3))^3+(m*(2*n^3-m^3))^3 = (n*(n^3+m^3))^3 (see References). - Bruno Berselli, Mar 13 2012

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, 2008 (Sixth edition), Par. 13.7.

Crossrefs

Programs

  • Magma
    &cat[[n*(n^3-1), n^3-1, 2*n^3+1, n*(n^3+2)]: n in [1..40]];
  • Mathematica
    Flatten[Table[{n^4 - n, n^3 - 1, 2 n^3 + 1, n^4 + 2 n}, {n, 1, 40}]] (* Vincenzo Librandi, Jan 02 2014 *)

A234860 Sum of the divisors of n^3 - 1.

Original entry on oeis.org

8, 42, 104, 224, 264, 780, 592, 1680, 1520, 2880, 1896, 5642, 2968, 5808, 8736, 9548, 7200, 15360, 8440, 19488, 19032, 23040, 14448, 49920, 23560, 31836, 32912, 53312, 34200, 77688, 38912, 70812, 62088, 74088, 67584, 152320, 56392, 107520, 99736
Offset: 2

Views

Author

Vincenzo Librandi, Jan 01 2014

Keywords

Crossrefs

Programs

  • Magma
    [SumOfDivisors(n^3-1): n in [2..50]];
    
  • Mathematica
    Table[Total[Divisors[n^3 - 1]], {n, 2, 50}]
  • PARI
    a(n) = sigma(n^3-1); \\ Amiram Eldar, Dec 09 2024

Formula

From Amiram Eldar, Dec 09 2024: (Start)
a(n) = A000203(A068601(n)).
Sum_{k=2..n} a(k) = c * n^4 + O((n*log(n))^3), where c = (83/288) * Product_{primes p == 1 (mod 3)} ((p^2+2)/(p^2-1)) * Product_{primes p == 2 (mod 3)} (p^2/(p^2-1)) = 0.4499262799... . (End)

Extensions

Offset corrected by Amiram Eldar, Dec 09 2024
Previous Showing 21-30 of 39 results. Next