A158623
Denominator of the reduced fraction A158620(n)/A158621(n).
Original entry on oeis.org
9, 18, 10, 45, 63, 28, 108, 135, 55, 198, 234, 91, 315, 360, 136, 459, 513, 190, 630, 693, 253, 828, 900, 325, 1053, 1134, 406, 1305, 1395, 496, 1584, 1683, 595, 1890, 1998, 703, 2223, 2340, 820, 2583, 2709, 946, 2970, 3105, 1081, 3384, 3528, 1225, 3825
Offset: 2
a(2) = 9 = denominator of (2^3-1)/2^3+1 = 7/9. a(3) = 18 = denominator of ((2^3-1)*(3^3-1))/((2^3+1)*(3^3+1)) = (7 * 26)/ (9 * 28) = 182/252 = 13/18. a(4) = 10 = denominator of ((2^3-1)*(3^3-1)*(4^3-1))/((2^3+1)*(3^3+1)*(4^3+1)) = (7 * 26 * 63)/(9 * 28 * 65) = 11466/16380 = 7/10. a(5) = 45 = denominator of ((2^3-1)(3^3-1)(4^3-1)(5^3-1))/((2^3+1)(3^3+1)(4^3+1)(5^3+1)) = 1421784/2063880 = 31/45.
A340242
Square array read by upward antidiagonals: T(n,k) is the number of n-ary strings of length k containing 000.
Original entry on oeis.org
1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 47, 1, 11, 65, 208, 295, 107, 1, 13, 96, 425, 1021, 1037, 238, 1, 15, 133, 756, 2621, 4831, 3555, 520, 1, 17, 176, 1225, 5611, 15569, 22276, 11961, 1121, 1, 19, 225, 1856, 10627, 40091, 90085, 100768, 39667, 2391
Offset: 2
For n = 4 and k = 5, there are 40 strings: {00000, 00001, 00002, 00003, 00010, 00011, 00012, 00013, 00020, 00021, 00022, 00023, 00030, 00031, 00032, 00033, 01000, 02000, 03000, 10000, 10001, 10002, 10003, 11000, 12000, 13000, 20000, 20001, 20002, 20003, 21000, 22000, 23000, 30000, 30001, 30002, 30003, 31000, 32000, 33000}.
Square table T(n,k):
k=3: k=4: k=5: k=6: k=7: k=8:
n=2: 1 3 8 20 47 107
n=3: 1 5 21 81 295 1037
n=4: 1 7 40 208 1021 4831
n=5: 1 9 65 425 2621 15569
n=6: 1 11 96 756 5611 40091
n=7: 1 13 133 1225 10627 88717
n=8: 1 15 176 1856 18425 175967
n=9: 1 17 225 2673 29881 321281
-
m[r_] := Normal[With[{p = 1/n}, SparseArray[{Band[{1, 2}] -> p, {i_, 1} /; i <= r -> 1 - p, {r + 1, r + 1} -> 1}]]];
T[n_, k_, r_] := MatrixPower[m[r], k][[1, r + 1]]*n^k;
Reverse[Table[T[n, k - n + 3, 3], {k, 2, 11}, {n, 2, k}], 2] // Flatten
-
my(x2='x^2+'x+1); T(n,k) = n^k - polcoeff(lift(x2*Mod('x, 'x^3-(n-1)*x2)^k), 2); \\ Kevin Ryde, Jan 02 2021
A088036
Numbers k such that k^3 - 1 is divisible by a cube other than 1.
Original entry on oeis.org
9, 10, 17, 18, 19, 25, 28, 33, 37, 41, 46, 49, 55, 57, 64, 65, 73, 81, 82, 89, 91, 97, 100, 105, 109, 113, 118, 121, 126, 127, 129, 136, 137, 145, 153, 154, 161, 163, 169, 172, 177, 181, 185, 190, 193, 199, 201, 208, 209, 217, 225, 226, 233, 235, 241, 244, 249
Offset: 1
-
isA046099 := proc(n)
local p;
for p in ifactors(n)[2] do
if op(2,p) >= 3 then
return true;
end if;
end do:
false ;
end proc:
n := 1;
for i from 1 to 5000 do
if isA046099(i^3-1) then
printf("%d %d\n",n,i) ;
n := n+1;
end if;
end do: # R. J. Mathar, Dec 03 2015
-
n3dcQ[n_]:=Count[Divisors[n^3-1]],?(IntegerQ[Surd[#,3]]&)>1; Select[ Range[ 2,250],n3dcQ] (* _Harvey P. Dale, Oct 05 2017 *)
-
from sympy import factorint
def ok(n): return max(factorint(n**3 - 1).values()) >= 3
print(list(filter(ok, range(1, 250)))) # Michael S. Branicky, Sep 10 2021
A128972
n^3 - 1 divided by its largest cube divisor.
Original entry on oeis.org
7, 26, 63, 124, 215, 342, 511, 91, 37, 1330, 1727, 2196, 2743, 3374, 4095, 614, 17, 254, 7999, 9260, 10647, 12166, 13823, 1953, 17575, 19682, 813, 24388, 26999, 29790, 32767, 4492, 39303, 42874, 46655, 1876, 54871, 59318, 63999, 8615, 74087, 79506
Offset: 2
a(9) = (9^3-1)/8 = (2^3 * 7 * 13)/(2^3) = 728/8 = 91.
a(10) = (10^3-1)/27 = (3^3 * 37)/(3^3) = 999/27 = 37.
a(18) = (18^3-1)/343 = (7^3 * 17)/(7^3) = 5831/343 = 17.
-
a:= n -> mul(f[1]^(f[2] mod 3), f = ifactors(n^3-1)[2]):
seq(a(n),n=2..100); # Robert Israel, Sep 24 2014
A135300
Positive X-values of solutions to the equation 1!*X^4 - 2!*(X + 1)^3 + 3!*(X + 2)^2 - (4^2)*(X + 3) + 5^2 = Y^3.
Original entry on oeis.org
1, 7, 26, 63, 124, 215, 342, 511, 728, 999, 1330, 1727, 2196, 2743, 3374, 4095, 4912, 5831, 6858, 7999, 9260, 10647, 12166, 13823, 15624, 17575, 19682, 21951, 24388, 26999, 29790, 32767, 35936, 39303, 42874
Offset: 1
-
Join[{1},LinearRecurrence[{4,-6,4,-1},{7,26,63,124},40]] (* Harvey P. Dale, Jul 12 2015 *)
-
a(n)=if(n>1, n^3-1, 1) \\ Charles R Greathouse IV, Oct 09 2016
A365373
a(n) = n*(3*n^4 + 15*n^3 + 25*n^2 - 15*n - 28)/60.
Original entry on oeis.org
0, 0, 7, 40, 136, 356, 791, 1568, 2856, 4872, 7887, 12232, 18304, 26572, 37583, 51968, 70448, 93840, 123063, 159144, 203224, 256564, 320551, 396704, 486680, 592280, 715455, 858312, 1023120, 1212316, 1428511, 1674496, 1953248, 2267936, 2621927, 3018792, 3462312
Offset: 0
-
a[n_]:= n*(3*n^4 + 15*n^3 + 25*n^2 - 15*n - 28)/60; Array[a,37,0]
-
def A365373(n): return n*(n*(n*(n*(3*n + 15) + 25) - 15) - 28)//60 # Chai Wah Wu, Sep 04 2023
A385591
Numbers k such that both k^3 - 1 and k^3 + 1 are triprimes.
Original entry on oeis.org
66, 132, 180, 228, 240, 288, 294, 336, 378, 420, 462, 600, 612, 660, 678, 702, 882, 918, 960, 1116, 1164, 1278, 1302, 1320, 1800, 2550, 2562, 3270, 3300, 3372, 3408, 3438, 3822, 3882, 3990, 4050, 4422, 4536, 4812, 5040, 5088, 5208, 5250, 5418, 5748, 5754, 5778, 5838, 6882, 6960, 7128, 7182, 7254
Offset: 1
a(3) = 180 is a term because 180^3 - 1 = 5831999 = 31 * 179 * 1051 and 5832001 = 7 * 181 * 4603 are each products of 3 primes.
-
filter:= k -> numtheory:-bigomega(k-1) + numtheory:-bigomega(k^2 + k + 1) = 3 and
numtheory:-bigomega(k+1) + numtheory:-bigomega(k^2 - k + 1) = 3:
select(filter, [seq(i,i=6 .. 10000, 6);
-
Select[Range[7500], PrimeOmega[#^3 - 1] == PrimeOmega[#^3 + 1] == 3 &] (* Amiram Eldar, Aug 10 2025 *)
A386915
Numbers k such that k^3 - 1 is a triprime.
Original entry on oeis.org
4, 5, 15, 27, 32, 42, 44, 48, 50, 59, 60, 66, 72, 75, 78, 84, 98, 104, 108, 114, 119, 132, 140, 143, 147, 152, 162, 167, 174, 180, 182, 188, 200, 203, 206, 212, 215, 218, 224, 228, 234, 236, 240, 252, 258, 264, 266, 270, 279, 288, 290, 294, 308, 318, 336, 338, 342, 350, 374, 378, 383, 384, 390
Offset: 1
a(3) = 15 is a term because 15^3 - 1 = 3374 = 2 * 7 * 241 is the product of three primes.
-
select(t -> numtheory:-bigomega(t^3-1)=3, [$1..1000]);
-
Select[Range[400], PrimeOmega[#^3 - 1] == 3 &] (* Amiram Eldar, Aug 08 2025 *)
-
isok(k) = bigomega(k^3-1) == 3; \\ Michel Marcus, Aug 08 2025
A204767
Quadruples (a,b,c,d) of the form ( n*(n^3-1), n^3-1, 2*n^3+1, n*(n^3+2) ).
Original entry on oeis.org
0, 0, 3, 3, 14, 7, 17, 20, 78, 26, 55, 87, 252, 63, 129, 264, 620, 124, 251, 635, 1290, 215, 433, 1308, 2394, 342, 687, 2415, 4088, 511, 1025, 4112, 6552, 728, 1459, 6579, 9990, 999, 2001, 10020, 14630, 1330, 2663, 14663, 20724, 1727, 3457, 20760, 28548, 2196, 4395, 28587
Offset: 1
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, 2008 (Sixth edition), Par. 13.7.
-
&cat[[n*(n^3-1), n^3-1, 2*n^3+1, n*(n^3+2)]: n in [1..40]];
-
Flatten[Table[{n^4 - n, n^3 - 1, 2 n^3 + 1, n^4 + 2 n}, {n, 1, 40}]] (* Vincenzo Librandi, Jan 02 2014 *)
A234860
Sum of the divisors of n^3 - 1.
Original entry on oeis.org
8, 42, 104, 224, 264, 780, 592, 1680, 1520, 2880, 1896, 5642, 2968, 5808, 8736, 9548, 7200, 15360, 8440, 19488, 19032, 23040, 14448, 49920, 23560, 31836, 32912, 53312, 34200, 77688, 38912, 70812, 62088, 74088, 67584, 152320, 56392, 107520, 99736
Offset: 2
-
[SumOfDivisors(n^3-1): n in [2..50]];
-
Table[Total[Divisors[n^3 - 1]], {n, 2, 50}]
-
a(n) = sigma(n^3-1); \\ Amiram Eldar, Dec 09 2024
Comments