cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 63 results. Next

A128919 Numbers simultaneously heptagonal and centered heptagonal.

Original entry on oeis.org

1, 148, 21022, 2984983, 423846571, 60183228106, 8545594544488, 1213414242089197, 172296276782121493, 24464857888819162816, 3473837523935538998386
Offset: 0

Views

Author

Steven Schlicker, Apr 24 2007

Keywords

Examples

			a(1)=148 because 148 is the seventh centered heptagonal number and the eighth heptagonal number.
		

Crossrefs

Programs

  • Maple
    CP := n -> 1+1/2*7*(n^2-n): N:=10: u:=6: v:=1: x:=7: y:=1: k_pcp:=[1]: for i from 1 to N do tempx:=x; tempy:=y; x:=tempx*u+35*tempy*v: y:=tempx*v+tempy*u: s:=(y+1)/2: k_pcp:=[op(k_pcp),CP(s)]: end do: k_pcp;
  • Mathematica
    Nest[Append[#,142Last[#]-#[[-2]]+7]&,{1,148},20]  (* Harvey P. Dale, Apr 17 2011 *)

Formula

x(n) + y(n)*sqrt(35) = (7+sqrt(35))*(6+sqrt(35))^n s(n) = (y(n)+1)/2 a(n) = (1/2)*(2+7*(s(n)^2-s(n))).
From Richard Choulet, Oct 01 2007: (Start)
a(n+2) = 142*a(n+1)-a(n)+7.
a(n+1) = 71*a(n)+3.5+1.5*(2240*a(n)^2+224*a(n)-63)^0.5.
G.f.: z*(1+5*z+z^2)/((1-z)*(1-142*z+z^2)). (End)

A209294 a(n) = (7*n^2 - 7*n + 4)/2.

Original entry on oeis.org

2, 9, 23, 44, 72, 107, 149, 198, 254, 317, 387, 464, 548, 639, 737, 842, 954, 1073, 1199, 1332, 1472, 1619, 1773, 1934, 2102, 2277, 2459, 2648, 2844, 3047, 3257, 3474, 3698, 3929, 4167, 4412, 4664, 4923, 5189, 5462
Offset: 1

Views

Author

Marco Piazzalunga, Jan 17 2013

Keywords

Comments

a(n) is the sum of the n-th centered triangular number and n-th centered square number.
Difference of consecutive terms gives A008589 (multiples of 7).

Crossrefs

Programs

Formula

a(n) = (7*n^2 - 7*n + 4) = 7*T(n) + 2 with T = A000217.
G.f.: x*(2+3*x+2*x^2)/(1-x)^3. - Bruno Berselli, Jan 18 2013
a(n) = a(-n+1) = 3*a(n-1)-3*a(n-2)+a(n-3). - Bruno Berselli, Jan 18 2013
a(n) = 1 + A069099(n). - Omar E. Pol, Apr 27 2017
E.g.f.: ((7*x^2 + 4)*exp(x) - 4)/2. - G. C. Greubel, Jan 04 2018

A274588 Values of n such that 2*n-1 and 7*n-1 are both triangular numbers.

Original entry on oeis.org

1, 8, 638, 6931, 572671, 6223778, 514257668, 5588945461, 461802812941, 5018866799948, 414698411763098, 4506936797407591, 372398711960448811, 4047224225205216518, 334413628642071268928, 3634402847297487025321, 300303066121868039048281
Offset: 1

Views

Author

Colin Barker, Jun 29 2016

Keywords

Examples

			8 is in the sequence because 2*8-1 = 15, 7*8-1 = 55, and 15 and 55 are both triangular numbers.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 + 7 x - 268 x^2 + 7 x^3 + x^4)/((1 - x) (1 - 30 x + x^2) (1 + 30 x + x^2)), {x, 0, 16}], x] (* Michael De Vlieger, Jun 30 2016 *)
    LinearRecurrence[{1,898,-898,-1,1},{1,8,638,6931,572671},20] (* Harvey P. Dale, Apr 10 2023 *)
  • PARI
    isok(n) = ispolygonal(2*n-1, 3) && ispolygonal(7*n-1, 3)
    
  • PARI
    Vec((1+7*x-268*x^2+7*x^3+x^4)/((1-x)*(1-30*x+x^2)*(1+30*x+x^2)) + O(x^20))

Formula

Intersection of A069099 and A174114.
G.f.: (1+7*x-268*x^2+7*x^3+x^4) / ((1-x)*(1-30*x+x^2)*(1+30*x+x^2)).

A338492 Least number of centered heptagonal numbers needed to represent n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 2, 3, 4, 5, 6, 7, 8, 9, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 2, 3, 4, 5, 6, 7, 8, 9, 3, 4, 5, 6, 7, 8, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 2, 3, 4, 5, 6, 7, 8, 2, 3, 4, 5, 6, 7, 8, 2, 3, 4, 5, 6, 7, 8, 9, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 30 2020

Keywords

Crossrefs

A360183 Centered heptagonal numbers which are sphenic numbers.

Original entry on oeis.org

638, 4922, 6322, 11978, 15478, 16906, 19426, 21022, 23822, 25586, 28666, 35351, 39698, 48322, 53383, 55126, 70078, 80333, 83546, 92422, 98197, 105358, 107801, 132406, 147806, 156563, 162541, 171718, 182743, 209231, 210946, 233878, 248578, 263726, 269522, 281303
Offset: 1

Views

Author

Massimo Kofler, Jan 29 2023

Keywords

Examples

			A069099(14) =  638 = (7*14^2 - 7*14 + 2)/2 = 2 * 11 * 29.
A069099(38) = 4922 = (7*38^2 - 7*38 + 2)/2 = 2 * 23 * 107.
A069099(43) = 6322 = (7*43^2 - 7*43 + 2)/2 = 2 * 29 * 109.
		

Crossrefs

Intersection of A069099 and A007304.

Programs

  • Maple
    select(t -> ifactors(t)[2][..,2]=[1,1,1], [(7*i^2-7*i+2)/2 $ i=1..1000]); # Robert Israel, Feb 28 2023
  • Mathematica
    Select[Table[(7*n^2 - 7*n + 2)/2, {n, 1, 300}], FactorInteger[#][[;; , 2]] == {1, 1, 1} &] (* Amiram Eldar, Jan 29 2023 *)

A141534 Derived from the centered polygonal numbers: start with the first triangular number, then the sum of the first square number and the second triangular number, then the sum of first pentagonal number, the second square number and the third triangular number, and so on and so on...

Original entry on oeis.org

1, 4, 11, 26, 55, 105, 184, 301, 466, 690, 985, 1364, 1841, 2431, 3150, 4015, 5044, 6256, 7671, 9310, 11195, 13349, 15796, 18561, 21670, 25150, 29029, 33336, 38101, 43355, 49130, 55459, 62376, 69916, 78115, 87010, 96639, 107041, 118256, 130325
Offset: 1

Views

Author

Dan Graybill (clopen(AT)comcast.net), Aug 12 2008

Keywords

Comments

Consider the array of triangular, square and centered polygonal numbers (irregular variant of A086272 and A086273):
1 3 6 10 15 21 28 36 45 55 A000217
1 4 9 16 25 36 49 64 81 100 A000290
1 6 16 31 51 76 106 141 181 226 A005891
1 7 19 37 61 91 127 169 217 271 A003215
1 8 22 43 71 106 148 197 253 316 A069099
1 9 25 49 81 121 169 225 289 361 A016754
1 10 28 55 91 136 190 253 325 406 A060544
1 11 31 61 101 151 211 281 361 451 A062786
1 12 34 67 111 166 232 309 397 496 A069125
1 13 37 73 121 181 253 337 433 541 A003154
1 14 40 79 131 196 274 365 469 586 A069126
1 15 43 85 141 211 295 393 505 631 A069127
etc. The sequence contains the antidiagonal sums of this array. - R. J. Mathar, Jun 05 2011
For comparison, the antidiagonal sums of A086270 are essentially A006522 starting at the 4th term. - R. J. Mathar, Sep 20 2008

Crossrefs

Cf. A000217.

Formula

a(n) = (n-1)*(n^3+11*n^2-38*n+120)/24, n>1. - R. J. Mathar, Sep 12 2008
G.f.: x*(1-x+x^2+x^3-x^5)/(1-x)^5. - Alexander R. Povolotsky, Jun 06 2011

A144975 Centered heptagonal twin prime numbers.

Original entry on oeis.org

43, 71, 197, 463, 1933, 5741, 8233, 9283, 11173, 14561, 34651, 41203, 57793, 68111, 84631, 104147, 139301, 168631, 207523, 244861, 307693, 333103, 357281, 415381, 465011, 475273, 506731, 592663, 595547, 607153, 729373, 742211, 781397, 876751
Offset: 1

Views

Author

Keywords

Examples

			43 is a term since it is centered heptagonal and the greater member of the twin primes pair (41, 43).
71 is a term since it is centered heptagonal and the lesser member of the twin primes pair (71, 73).
		

Crossrefs

Programs

  • Magma
    [a:k in [1..510]|IsPrime(a) and (IsPrime(a-2) or IsPrime(a+2)) where a is (7*k^2-7*k+2) div 2]; // Marius A. Burtea, Jan 30 2020
  • Mathematica
    TwinPrimeQ[n_]:=If[PrimeQ[n],If[PrimeQ[n-2]||PrimeQ[n+2],True,False],False](*TwinPrimeQ*) lst={};Do[p=(7*n^2-7*n+2)/2;If[TwinPrimeQ[p],AppendTo[lst,p]],{n,2*6!}];lst

A244911 Table read by antidiagonals: T(n,k) = n*k + T(n-1,k) for n >=1, T(0,k) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 7, 7, 1, 1, 5, 10, 13, 11, 1, 1, 6, 13, 19, 21, 16, 1, 1, 7, 16, 25, 31, 31, 22, 1, 1, 8, 19, 31, 41, 46, 43, 29, 1, 1, 9, 22, 37, 51, 61, 64, 57, 37, 1, 1, 10, 25, 43, 61, 76, 85, 85, 73, 46, 1, 1, 11, 28, 49, 71, 91, 106, 113, 109, 91
Offset: 0

Views

Author

Kival Ngaokrajang, Jul 07 2014

Keywords

Comments

T(n,k) is the total number of boxes, when we start with 1 center box (n = 0) then expand 1 box on k-arms for each n iteration. See illustration in links.
It seems that column C(k) = centered k-gonal numbers, and row R(n) = A000217(n)*k + 1.
The triangle under the main diagonal is A121722.
Column N (CN) is the Narayana transform (A001263) of (1, N, 0, 0, 0, ...). Example: C2 (1, 3, 7, 13, ...) is the Narayana transform of (1, 2, 0, 0, 0, ...). - Gary W. Adamson, Oct 01 2015

Examples

			Table begins:
       C0  C1  C2  C3  C4  C5
  n/k  0   1   2   3   4   5   ...
R0 0   1   1   1   1   1   1   ...
R1 1   1   2   3   4   5   6   ...
R2 2   1   4   7   10  13  16  ...
R3 3   1   7   13  19  25  31  ...
R4 4   1   11  21  31  41  51  ...
R5 5   1   16  31  46  61  76  ...
R6 6   1   22  43  64  85  106 ...
R7 7   1   29  57  85  113 141 ...
R8 8   1   37  73  109 145 181 ...
R9 9   1   46  91  136 181 226 ...
  ...  ... ... ... ... ... ... ...
C1 = A000124, C2 = A002061, C3 = A005448, C4 = A001844, C5 = A005891, C6 = A003215, C7 = A069099, C8 = A016754, C9 = A060544, C10 = A062786, C11 = A069125, C12  =  A003154.
R1 = A000027, R2 = A016777, R3 = A016921, R4 = A017281, R5 = 15*k + 1, R6 = A215146, R7 = A161714.
		

Crossrefs

Formula

T(n,k) = n*k + T(n-1,k) for n >=1, T(0,k) = 1.

A274682 Numbers n such that 8*n-1 is a triangular number.

Original entry on oeis.org

2, 7, 29, 44, 88, 113, 179, 214, 302, 347, 457, 512, 644, 709, 863, 938, 1114, 1199, 1397, 1492, 1712, 1817, 2059, 2174, 2438, 2563, 2849, 2984, 3292, 3437, 3767, 3922, 4274, 4439, 4813, 4988, 5384, 5569, 5987, 6182, 6622, 6827, 7289, 7504, 7988, 8213, 8719
Offset: 1

Views

Author

Colin Barker, Jul 02 2016

Keywords

Examples

			2 is in the sequence since 8*2 - 1 = 15, and 15 = 1 + 2 + 3 + 4 + 5 is a triangular number. - _Michael B. Porter_, Jul 03 2016
		

Crossrefs

Cf. A000124 (n-1), A174114 (2*n-1), A213399 (4*n-1), A069099 (7*n-1).

Programs

  • Mathematica
    Table[(5 + 3 (-1)^n - 2 (8 + 3 (-1)^n) n + 16 n^2)/4, {n, 47}] (* or *)
    Rest@ CoefficientList[Series[x (2 + 5 x + 18 x^2 + 5 x^3 + 2 x^4)/((1 - x)^3 (1 + x)^2), {x, 0, 47}], x] (* Michael De Vlieger, Jul 02 2016 *)
  • PARI
    isok(n) = ispolygonal(8*n-1, 3)
    
  • PARI
    select(n->ispolygonal(8*n-1, 3), vector(10000, n, n-1))
    
  • PARI
    Vec(x*(2+5*x+18*x^2+5*x^3+2*x^4)/((1-x)^3*(1+x)^2) + O(x^100))

Formula

a(n) = (5+3*(-1)^n-2*(8+3*(-1)^n)*n+16*n^2)/4.
a(n) = (8*n^2-11*n+4)/2 for n even.
a(n) = (8*n^2-5*n+1)/2 for n odd.
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5) for n>5.
G.f.: x*(2+5*x+18*x^2+5*x^3+2*x^4) / ((1-x)^3*(1+x)^2).

A279946 Numbers that are both dodecagonal and centered heptagonal.

Original entry on oeis.org

1, 10396, 326656, 2619897841, 82318050361, 660219495802336, 20744313326831116, 166376633378560463881, 5227608446905776928921, 41927244364003774523222476, 1317367783816405284315203776, 10565749434051302554022550018121, 331979316252074156011094205115681
Offset: 1

Views

Author

Ann Skoryk, Dec 23 2016

Keywords

Comments

From Jon E. Schoenfield, Dec 24 2016: (Start)
Intersection of dodecagonal numbers A051624 and centered heptagonal numbers A069099. A051624(j) = j(5j - 4), A069099(k) = (7*k^2 - 7^k + 2)/2, and the table below gives indices j and k at which A051624(j) = A069099(k):
.
n a(n) j k
= ================= ======== ========
1 1 1 0, 1
2 10396 46 55
3 326656 256 306
4 2619897841 22891 27360
5 82318050361 128311 153361
6 660219495802336 11491036 13734415
7 20744313326831116 64411666 76986666
... (End)

Examples

			From _Jon E. Schoenfield_, Dec 24 2016: (Start)
10396 is both the 46th dodecagonal number and the 55th centered heptagonal number: A051624(46) = 46(5*46 - 4) = 10396 and A069099(55) = (7*55^2 - 7*55 + 2)/2 = 10396.
A051624(256) = 256(5*256 - 4) = 326656 = (7*306^2 - 7*306 + 2)/2 = A069099(306). (End)
		

References

  • F. Tapson (1999). The Oxford Mathematics Study Dictionary (2nd ed.). Oxford University Press. pp. 88-89.

Crossrefs

Cf. dodecagonal numbers A051624, centered heptagonal numbers A069099.

Programs

  • Mathematica
    LinearRecurrence[{1,252002,-252002,-1,1},{1,10396,326656,2619897841,82318050361},20] (* Harvey P. Dale, Jul 06 2021 *)
  • PARI
    Vec(x*(1 + 10395*x + 64258*x^2 + 10395*x^3 + x^4) / ((1 - x)*(1 - 502*x + x^2)*(1 + 502*x + x^2)) + O(x^20)) \\ Colin Barker, Dec 24 2016

Formula

Empirical: a(1)=1, a(2)=10396, a(3)=326656, a(4)=2619897841, a(n) = 252002*a(n-2) - a(n-4) + 85050 for n > 4. - Jon E. Schoenfield, Dec 24 2016
G.f.: x*(1 + 10395*x + 64258*x^2 + 10395*x^3 + x^4) / ((1 - x)*(1 - 502*x + x^2)*(1 + 502*x + x^2)). - Colin Barker, Dec 24 2016
Previous Showing 51-60 of 63 results. Next