cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A133541 Sum of fifth powers of five consecutive primes.

Original entry on oeis.org

181258, 552519, 1972133, 4445107, 10864643, 31214741, 59472599, 127396699, 240776801, 381348901, 590182759, 979749101, 1625329443, 2354069543, 3557186207, 5132070551, 6786946651, 9149078751, 12243523093, 16477457435
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=181258 because 2^5+3^5+5^5+7^5+11^5=181258.
		

Crossrefs

Programs

  • Mathematica
    a = 5; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a, {n, 1, 100}]
    Total/@Partition[Prime[Range[30]]^5,5,1] (* Harvey P. Dale, Dec 02 2017 *)

Formula

a(n) = A133527(n) + A050997(n+4). - Michel Marcus, Nov 09 2013

A133542 Sum of sixth powers of five consecutive primes.

Original entry on oeis.org

1905628, 6732373, 30869213, 77899469, 225817709, 818869469, 1701546341, 4243135181, 8946193541, 15119520701, 25303912709, 46580770157, 86195577389, 132965847509, 217102866629, 334423935221, 463593800381, 664500722261
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=1905628 because 2^6+3^6+5^6+7^6+11^6=1905628.
		

Crossrefs

Programs

  • Mathematica
    a = 6; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a, {n, 1, 100}]
    Total/@(Partition[Prime[Range[30]],5,1]^6)  (* Harvey P. Dale, Mar 13 2011 *)

Formula

a(n) = A133528(n) + A030516(n+4). - Michel Marcus, Nov 09 2013

A069486 a(n) = 2*prime(n)*prime(n+1).

Original entry on oeis.org

12, 30, 70, 154, 286, 442, 646, 874, 1334, 1798, 2294, 3034, 3526, 4042, 4982, 6254, 7198, 8174, 9514, 10366, 11534, 13114, 14774, 17266, 19594, 20806, 22042, 23326, 24634, 28702, 33274, 35894, 38086, 41422, 44998
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 29 2002

Keywords

Comments

a(n) = 2*A006094(n);
together with A069482(n) and A069484(n) a Pythagorean triangle is formed with area = A069487(n).

Crossrefs

Programs

  • Mathematica
    2Times@@#&/@Partition[Prime[Range[40]],2,1] (* Harvey P. Dale, Dec 17 2012 *)

A216432 Semiprimes that are sums of squares of two consecutive primes.

Original entry on oeis.org

34, 74, 458, 4058, 28898, 45002, 51218, 57818, 64802, 84122, 115202, 145802, 233978, 352802, 363002, 530522, 609458, 649802, 756458, 924818, 994082, 1391162, 1609418, 2179922, 2599442, 2832218, 3328202, 3484802, 3864362, 3942482, 5425418, 5746058, 6125018
Offset: 1

Views

Author

Zak Seidov, Sep 09 2012

Keywords

Comments

Semiprimes in A069484. - Zak Seidov, Apr 11 2014

Examples

			34 = 2*17 = 3^2+5^2, 74 = 2*37 = 5^2+7^2, 458 = 2*229 = 13^2+17^2.
		

Crossrefs

Subsequence of A100484.

Programs

  • Mathematica
    Select[(Total/@Partition[Prime[Range[500]]^2,2,1]),PrimeOmega[#]==2&] (* Harvey P. Dale, Sep 23 2012 *)
  • PARI
    v=List();p=3;forprime(q=5,1e4,if(isprime((p^2+q^2)\2),listput(v,p^2+q^2));p=q);Vec(v) \\ Charles R Greathouse IV, Sep 23 2012

A048851 Length of hypotenuse squared in right triangle formed by a prime spiral plotted in Cartesian coordinates.

Original entry on oeis.org

8, 13, 34, 74, 170, 290, 458, 650, 890, 1370, 1802, 2330, 3050, 3530, 4058, 5018, 6290, 7202, 8210, 9530, 10370, 11570, 13130, 14810, 17330, 19610, 20810, 22058, 23330, 24650, 28898, 33290, 35930, 38090, 41522, 45002, 47450, 51218, 54458
Offset: 1

Views

Author

Keywords

Examples

			a(2) = 13 because c^2 = a^2 + b^2 = 4 + 9 = 13.
		

References

  • H. E. Huntley, The Divine Proportion, A Study in Mathematical Beauty. New York: Dover, 1970. See Chapter 13, Spira Mirabilis, especially Fig. 13-5, page 173.

Crossrefs

Cf. A006094.

Formula

To begin prime spiral, plot (2, 0), (0, 2). Square of hypotenuse is c^2 = a^2 + b^2, or 8 = 4 + 4, so a(1) = 8.
a(n) = A069484(n-1), n >= 2. - Mamuka Jibladze, Mar 24 2017

A069485 Greatest prime factor of prime(n+1)^2 + prime(n)^2.

Original entry on oeis.org

13, 17, 37, 17, 29, 229, 13, 89, 137, 53, 233, 61, 353, 2029, 193, 37, 277, 821, 953, 61, 89, 101, 1481, 1733, 53, 2081, 269, 2333, 29, 14449, 3329, 3593, 293, 1597, 22501, 73, 25609, 373, 28909, 6197, 32401, 389, 101, 2237, 7841, 42061, 29, 257, 281, 821
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 29 2002

Keywords

Comments

How small can members of this sequence be? For example, a(52837) = 97 since 650107^2 + 650099^2 = 2 * 5^4 * 29 * 37 * 73 * 89 * 97. - Charles R Greathouse IV, May 14 2014

Examples

			A069482(10) = A000040(11)^2 + A000040(10)^2 = 29^2 + 31^2 = 841 + 961 = 1802 = 2*17*53, therefore a(10) = 53.
		

Crossrefs

Cf. A069483.

Programs

  • Maple
    seq(max(map2(op,1,ifactors(ithprime(i+1)^2 + ithprime(i)^2)[2])), i=1..1000); # Robert Israel, May 18 2014
  • Mathematica
    Table[ FactorInteger[ Prime[n + 1]^2 + Prime[n]^2] [[ -1, 1]], {n, 1, 50} ]
    FactorInteger[#][[-1,1]]&/@Total/@Partition[Prime[Range[60]]^2,2,1] (* Harvey P. Dale, Jul 08 2019 *)
  • PARI
    gpf(n)=my(f=factor(n)[,1]); f[#f]
    a(n)=my(p=prime(n)); gpf(nextprime(p+1)^2 + p^2) \\ Charles R Greathouse IV, May 14 2014

Formula

a(n) = A006530(A069484(n)).

Extensions

Edited and extended by Robert G. Wilson v, Apr 18 2002

A131686 Sum of squares of five consecutive primes.

Original entry on oeis.org

208, 373, 653, 989, 1469, 2189, 2981, 4061, 5381, 6701, 8069, 9917, 12029, 14069, 16709, 19541, 22061, 24821, 27989, 31421, 35789, 40661, 45029, 49589, 53549, 56909, 62837, 69389, 76709, 84149, 93581, 100253, 107741, 115541, 124109, 131837
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=208 because 2^2+3^2+5^2+7^2+11^2=208
		

Crossrefs

Programs

  • Mathematica
    a = 2; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a, {n, 1, 100}]

A160054 Primes prime(k) such that prime(k)^2 + prime(k+1)^2 - 1 is a perfect square.

Original entry on oeis.org

7, 11, 23, 109, 211, 307, 1021, 4583, 42967, 297779, 1022443, 1459811, 10781809, 125211211, 11673806759, 3019843939831, 40047392632801, 88212019638251209, 444190204424015227, 57852556614292865039, 9801250757169593701501, 64747502900142088755541, 619216322498658374863033
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), May 01 2009

Keywords

Comments

An infinite number of solutions exists for a^2 + b^2 - 1 = c^2 over the set of natural numbers a, b, c.
If we constrain these to b=a+2, i.e., 2a^2 + 4a + 3 = c^2, the solutions are with a = 1, 11, 69, 407, 2377, ... (The twin prime 11 is also in this sequence here. The solutions can be generated recursively from a(0)=1, m(0)=3 and a(k+1) = 3*a(k) + 2*m(k) + 2, m(k+1) = 4*a(k) + 3*m(k) + 4.)
Filtering these solutions for prime pairs a(k) and b(k) would generate the subset of lower twin primes in the sequence.
The equivalent procedure can be carried out for other prime gaps 2*d such that prime(k)=a, prime(k+1)=a+2*d, 2*a^2 + 4*a*d + 4*d^2 - 1 = m^2. This decomposes the sequence into classes according to the gap 2*d.
a(17) > 5*10^12. - Donovan Johnson, May 17 2010

Examples

			7^2 + 11^2 - 1 = 13^2.
11^2 + 13^2 - 1 = 17^2.
23^2 + 29^2 - 1 = 37^2.
109^2 + 113^2 - 1 = 157^2.
211^2 + 223^2 - 1 = 307^2.
307^2 + 311^2 - 1 = 19^2*23^2.
1021^2 + 1031^2 - 1 = 1451^2.
4583^2 + 4591^2 - 1 = 13^2*499^2.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..2*10^7] | IsSquare(n^2+NextPrime(n+1)^2-1) and IsPrime(n)]; // Vincenzo Librandi, Aug 02 2015
  • Mathematica
    lst = {}; p = q = 2; While[p < 4000000000, q = NextPrime@ p; If[ IntegerQ[ Sqrt[p^2 + q^2 - 1]], AppendTo[lst, p]; Print@ p]; p = q]; lst (* Robert G. Wilson v, May 31 2009 *)
  • PARI
    p=2;forprime(q=3,1e6,if(issquare(q^2+p^2-1),print1(p", "));p=q) \\ Charles R Greathouse IV, Nov 06 2014
    
  • PARI
    is(n)=issquare(n^2+nextprime(n+1)^2-1)&&isprime(n) \\ Charles R Greathouse IV, Nov 29 2014
    

Formula

{A000040(k): A069484(k)-1 in A000290}.

Extensions

Edited and 4 more terms from R. J. Mathar, May 08 2009
a(13) from Robert G. Wilson v, May 31 2009
a(15)-a(16) from Donovan Johnson, May 17 2010
More terms from Jinyuan Wang, Jan 09 2021

A240749 Numbers n such that prime(n)^2 + prime(n+1)^2 is a semiprime.

Original entry on oeis.org

2, 3, 6, 14, 30, 35, 37, 39, 41, 46, 52, 57, 68, 81, 82, 97, 101, 104, 112, 123, 126, 145, 154, 175, 189, 195, 209, 215, 221, 222, 259, 264, 272, 276, 308, 312, 314, 343, 357, 367, 370, 373, 389, 398, 399, 403, 411, 416, 418, 425, 432, 436, 447, 456, 462, 471, 473, 477, 485, 487, 489, 499, 509, 520, 538, 547
Offset: 1

Views

Author

Zak Seidov, Apr 11 2014

Keywords

Comments

a(n) = position of A216432(n) in A069484.

Examples

			a(1) = 2: prime (2)^2 + prime (3)^2  = 3^2 + 5^2 = 34 = A069484(2) = A216432 (1).
a(2) = 3: prime (3)^2 + prime (4)^2  = 5^2 + 7^2 = 74 = A069484(3)  = A216432 (2).
a(3) = 6: prime (6)^2 + prime (7)^2  = 13^2 + 17^2 = 458 = A069484(6)  = A216432 (3).
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    isok := n -> evalb(bigomega(ithprime(n)^2 + ithprime(n+1)^2) = 2);
    A240749_list := n -> select(isok, [$1..n]); A240749_list(555); # Peter Luschny, Apr 12 2014
  • Mathematica
    Position[Total/@Partition[Prime[Range[600]]^2,2,1],?(PrimeOmega[#] == 2&)]// Flatten (* _Harvey P. Dale, Apr 12 2017 *)
  • PARI
    isok(n) = bigomega(prime(n)^2  + prime(n+1)^2) == 2;
    lista(nn) = {for(n=1, nn, if (isok(n), print1(n, ", ")));} \\ Michel Marcus, Apr 12 2014
    
  • PARI
    s=[]; for(n=2, 600, if(isprime((prime(n)^2+prime(n+1)^2)/2), s=concat(s, n))); s \\ Colin Barker, Apr 12 2014

A287922 a(n) = prime(1)^2 + prime(n)^2.

Original entry on oeis.org

8, 13, 29, 53, 125, 173, 293, 365, 533, 845, 965, 1373, 1685, 1853, 2213, 2813, 3485, 3725, 4493, 5045, 5333, 6245, 6893, 7925, 9413, 10205, 10613, 11453, 11885, 12773, 16133, 17165, 18773, 19325, 22205, 22805, 24653, 26573, 27893, 29933, 32045, 32765, 36485
Offset: 1

Views

Author

XU Pingya, Jun 02 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[4+Prime[n]^2, {n, 43}]
    Prime[Range[50]]^2+4 (* Harvey P. Dale, Feb 16 2020 *)
  • Python
    from sympy import prime, primerange
    def aupton(terms): return [4 + p*p for p in primerange(2, prime(terms)+1)]
    print(aupton(43)) # Michael S. Branicky, Aug 13 2021

Formula

a(n) = 4 + prime(n)^2.
Previous Showing 11-20 of 22 results. Next