A015007
q-factorial numbers for q=8.
Original entry on oeis.org
1, 1, 9, 657, 384345, 1799118945, 67375205371305, 20185139902805378865, 48378633136349277767794425, 927610024989668734297857360967425, 142287668466497494704440569679875994730825, 174605966461872393482359052970987514818406771638225
Offset: 0
-
[n le 1 select 1 else (8^n-1)*Self(n-1)/7: n in [1..15]]; // Vincenzo Librandi, Oct 26 2012
-
RecurrenceTable[{a[1]==1, a[n]==((8^n - 1) * a[n-1])/7}, a, {n, 15}] (* Vincenzo Librandi, Oct 26 2012 *)
Table[QFactorial[n, 8], {n, 15}] (* Bruno Berselli, Aug 14 2013 *)
A015008
q-factorial numbers for q=9.
Original entry on oeis.org
1, 1, 10, 910, 746200, 5507702200, 365876657146000, 218747042884536166000, 1177042838234827583459440000, 57001313848230245122464621625840000, 24843911488189148287648216529610193612000000, 97453533413342456299179976631323547842824103012000000
Offset: 0
-
[n le 1 select 1 else (9^n - 1)*Self(n-1)/8: n in [1..15]]; // Vincenzo Librandi, Oct 26 2012
-
RecurrenceTable[{a[1]==1, a[n]==((9^n - 1) * a[n-1])/8}, a, {n, 15}] (* Vincenzo Librandi, Oct 26 2012 *)
Table[QFactorial[n, 9], {n, 15}] (* Bruno Berselli, Aug 14 2013 *)
A015009
q-factorial numbers for q=10.
Original entry on oeis.org
1, 1, 11, 1221, 1356531, 15072415941, 1674711207620451, 1860790044610366931061, 20675444733360738721748118771, 2297271634742810443154153338805764581, 2552524038347870310755413660544832496799359491, 28361378203581611893021499527080870668821235178133404501
Offset: 0
-
[n le 1 select 1 else (10^n-1)*Self(n-1)/9: n in [1..15]]; // Vincenzo Librandi, Oct 26 2012
-
RecurrenceTable[{a[1]==1, a[n]==((10^n-1) * a[n-1])/9}, a, {n, 15}] (* Vincenzo Librandi, Oct 26 2012 *)
Table[QFactorial[n, 10], {n, 15}] (* Bruno Berselli, Aug 14 2013 *)
A015011
q-factorial numbers for q=11.
Original entry on oeis.org
1, 1, 12, 1596, 2336544, 37630041120, 6666387564654720, 12990902775831251994240, 278471536921607824648305285120, 65662131721505488121539650946349537280, 170310659060181679663863033233125976844488908800, 4859161865915056755501262525796512204608930674134393036800
Offset: 0
-
[n le 1 select 1 else (11^n-1)*Self(n-1)/10: n in [1..15]]; // Vincenzo Librandi, Oct 26 2012
-
RecurrenceTable[{a[1]==1, a[n]==((11^n - 1) * a[n-1])/10}, a, {n, 15}] (* Vincenzo Librandi, Oct 26 2012 *)
Table[QFactorial[n, 11], {n, 11}] (* Bruno Berselli, Aug 14 2013 *)
A015005
q-factorial numbers for q=6.
Original entry on oeis.org
1, 1, 7, 301, 77959, 121226245, 1131162092095, 63330372050122765, 21274128570193389587095, 42878835824239014254983869205, 518543838148941095553869851505328175, 37625235473766496167083515195884075739704925, 16380389585902052954270520869620904155598347770499975
Offset: 0
-
[n le 1 select 1 else (6^n-1)*Self(n-1)/5: n in [1..15]]; // Vincenzo Librandi, Oct 25 2012
-
RecurrenceTable[{a[1]==1, a[n]==((6^n - 1) * a[n-1])/5}, a, {n, 15}] (* Vincenzo Librandi, Oct 25 2012 *)
Table[QFactorial[n, 6], {n, 15}] (* Bruno Berselli, Aug 14 2013 *)
A069779
q-factorial numbers 4!_q.
Original entry on oeis.org
1, 24, 315, 2080, 8925, 29016, 77959, 182400, 384345, 746200, 1356531, 2336544, 3847285, 6097560, 9352575, 13943296, 20276529, 28845720, 40242475, 55168800, 74450061, 99048664, 130078455, 168819840, 216735625, 275487576, 346953699, 433246240, 536730405, 660043800
Offset: 0
-
Table[QFactorial[4, n], {n, 0, 29}] (* Arkadiusz Wesolowski, Nov 01 2012 *)
LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,24,315,2080,8925,29016,77959},30] (* Harvey P. Dale, Aug 30 2020 *)
A218503
q-factorial numbers 5!_q.
Original entry on oeis.org
1, 120, 9765, 251680, 3043425, 22661496, 121226245, 510902400, 1799118945, 5507702200, 15072415941, 37630041120, 87029433985, 188664603960, 386925380325, 756298318336, 1417430759745, 2559798038520, 4472991338725, 7589075296800, 12538953723681
Offset: 0
- Index entries for sequences related to factorial numbers
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
-
Table[QFactorial[5, n], {n, 0, 20}]
Join[{1},With[{f=Times@@Table[Total[n^Range[0,i]],{i,4}]},Table[f,{n,20}]]] (* or *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,120,9765,251680,3043425,22661496,121226245,510902400,1799118945,5507702200,15072415941},30] (* Harvey P. Dale, Sep 04 2017 *)
A347611
a(n) is the n-th n-factorial number: a(n) = n!_n.
Original entry on oeis.org
1, 1, 3, 52, 8925, 22661496, 1131162092095, 1375009641495014400, 48378633136349277767794425, 57001313848230245122464621625840000, 2552524038347870310755413660544832496799359491, 4859161865915056755501262525796512204608930674134393036800
Offset: 0
-
b:= proc(n, k) option remember; `if`(n<2, 1,
b(n-1, k)*(k^n-1)/(k-1))
end:
a:= n-> b(n$2):
seq(a(n), n=0..12);
-
Array[QFactorial[#, #] &, 12, 0] (* Michael De Vlieger, Sep 09 2021 *)
-
a(n) = if (n<=1, 1, prod(k=1, n, (n^k-1)/(n-1))); \\ Michel Marcus, Sep 09 2021
-
from math import prod
def a(n):
return 1 if n <= 1 else prod((n**k - 1)//(n - 1) for k in range(1, n+1))
print([a(n) for n in range(12)]) # Michael S. Branicky, Sep 09 2021
A276823
a(n) = 3 * [3*n]_2! / ([2*n+1]_2! * [n+1]_2!), where [n]_q! is the q-factorial.
Original entry on oeis.org
1, 9, 1241, 2634489, 87807053113, 46414431022602681, 390913823614809035461305, 52571422826552549403006580802745, 113007269646365312407427675894837602068665, 3884802624238339577626451297006421856376970743148729
Offset: 1
-
a:= n-> 3*mul((2^j-1), j=1..3*n)/
(mul((2^j-1), j=1..2*n+1)*
mul((2^j-1), j=1..n+1)):
seq(a(n), n=1..12); # Alois P. Heinz, Sep 20 2016
-
Table[3 QFactorial[3 n, 2]/(QFactorial[2 n + 1, 2] QFactorial[n + 1, 2]), {n, 10}] (* or *)
Table[3 QBinomial[3 n, 2 n + 1, 2]/(1 - 3 * 2^n + 2^(2 n + 1)), {n, 10}]
A320354
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals: A(n,k) = Product_{j=1..n} (k^j - 1).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 16, 21, 0, 1, 4, 45, 416, 315, 0, 1, 5, 96, 2835, 33280, 9765, 0, 1, 6, 175, 11904, 722925, 8053760, 615195, 0, 1, 7, 288, 37625, 7428096, 739552275, 5863137280, 78129765, 0, 1, 8, 441, 98496, 48724375, 23205371904, 3028466566125, 12816818094080, 19923090075, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 3, 16, 45, 96, 175, ...
0, 21, 416, 2835, 11904, 37625, ...
0, 315, 33280, 722925, 7428096, 48724375, ...
0, 9765, 8053760, 739552275, 23205371904, 378832015625, ...
Columns k=1..12 give
A000007,
A005329,
A027871,
A027637,
A027872,
A027873,
A027875,
A027876,
A027877,
A027878,
A027879,
A027880.
-
Table[Function[k, Product[k^j - 1, {j, 1, n}]][m - n + 1], {m, 0, 9}, {n, 0, m}] // Flatten
Table[Function[k, SeriesCoefficient[Sum[k^(i (i + 1)/2) x^i/Product[(1 + k^j x), {j, 0, i}], {i, 0, n}], {x, 0, n}]][m - n + 1], {m, 0, 9}, {n, 0, m}] // Flatten