A350042 Sum of all the parts in the partitions of n into 3 positive integer parts.
0, 0, 0, 3, 4, 10, 18, 28, 40, 63, 80, 110, 144, 182, 224, 285, 336, 408, 486, 570, 660, 777, 880, 1012, 1152, 1300, 1456, 1647, 1820, 2030, 2250, 2480, 2720, 3003, 3264, 3570, 3888, 4218, 4560, 4953, 5320, 5740, 6174, 6622, 7084, 7605, 8096, 8648, 9216, 9800, 10400
Offset: 0
Keywords
Examples
a(9) = 63 since we have the partitions (1,1,7), (1,2,6), (1,3,5), (1,4,4), (2,2,5), (2,3,4) and (3,3,3). Since the parts in each partition sum to 9 and we have 7 partitions, a(9) = 9*7 = 63.
Links
Crossrefs
Cf. A069905.
Programs
-
PARI
a(n) = floor((n^2+6)/12) * n \\ Winston de Greef, Oct 02 2023
Formula
a(n) = n * A069905(n).
Comments