cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 87 results. Next

A350042 Sum of all the parts in the partitions of n into 3 positive integer parts.

Original entry on oeis.org

0, 0, 0, 3, 4, 10, 18, 28, 40, 63, 80, 110, 144, 182, 224, 285, 336, 408, 486, 570, 660, 777, 880, 1012, 1152, 1300, 1456, 1647, 1820, 2030, 2250, 2480, 2720, 3003, 3264, 3570, 3888, 4218, 4560, 4953, 5320, 5740, 6174, 6622, 7084, 7605, 8096, 8648, 9216, 9800, 10400
Offset: 0

Views

Author

Wesley Ivan Hurt, Dec 10 2021

Keywords

Examples

			a(9) = 63 since we have the partitions (1,1,7), (1,2,6), (1,3,5), (1,4,4), (2,2,5), (2,3,4) and (3,3,3). Since the parts in each partition sum to 9 and we have 7 partitions, a(9) = 9*7 = 63.
		

Crossrefs

Cf. A069905.

Programs

Formula

a(n) = n * A069905(n).

A360240 Weakly decreasing triples of positive integers sorted lexicographically and concatenated.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 3, 1, 1, 3, 2, 1, 3, 2, 2, 3, 3, 1, 3, 3, 2, 3, 3, 3, 4, 1, 1, 4, 2, 1, 4, 2, 2, 4, 3, 1, 4, 3, 2, 4, 3, 3, 4, 4, 1, 4, 4, 2, 4, 4, 3, 4, 4, 4, 5, 1, 1, 5, 2, 1, 5, 2, 2, 5, 3, 1, 5, 3, 2, 5, 3, 3, 5, 4, 1, 5, 4, 2, 5, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Feb 11 2023

Keywords

Examples

			Triples begin: (1,1,1), (2,1,1), (2,2,1), (2,2,2), (3,1,1), (3,2,1), (3,2,2), (3,3,1), (3,3,2), (3,3,3), ...
		

Crossrefs

The triples have sums A070770.
Positions of first appearances are A158842.
For pairs instead of triples we have A330709 + 1.
The zero-based version is A331195.
- The first part is A360010 = A056556 + 1.
- The second part is A194848 = A056557 + 1.
- The third part is A333516 = A056558 + 1.

Programs

  • Mathematica
    nn=9;Join@@Select[Tuples[Range[nn],3],GreaterEqual@@#&]
  • Python
    from math import isqrt, comb
    from sympy import integer_nthroot
    def A360240(n): return (m:=integer_nthroot((n-1<<1)+6,3)[0])+(n>3*comb(m+2,3)) if (a:=n%3)==1 else (k:=isqrt(r:=(b:=(n-1)//3)+1-comb((m:=integer_nthroot((n-1<<1)-1,3)[0])-(b(k<<2)*(k+1)+1) if a==2 else 1+(r:=(b:=(n-1)//3)-comb((m:=integer_nthroot((n-1<<1)-3,3)[0])+(b>=comb(m+2,3))+1,3))-comb((k:=isqrt(m:=r+1<<1))+(m>k*(k+1)),2) # Chai Wah Wu, Jun 07 2025

Formula

a(n) = A331195(n-1) + 1.

A158138 Number of nondecreasing integer sequences of length 4 with sum zero and sum of absolute values 2n.

Original entry on oeis.org

1, 4, 6, 11, 13, 22, 24, 35, 39, 52, 56, 73, 77, 96, 102, 123, 129, 154, 160, 187, 195, 224, 232, 265, 273, 308, 318, 355, 365, 406, 416, 459, 471, 516, 528, 577, 589, 640, 654, 707, 721, 778, 792, 851, 867, 928, 944, 1009, 1025, 1092, 1110, 1179, 1197, 1270, 1288
Offset: 1

Views

Author

R. H. Hardin, Mar 13 2009

Keywords

Comments

a(n) = A000041(n)^2 for n<=2
a(n) = A000041(n)^2 - cumulative A000712(2*n-1-length), 0 <= 2*n-1-length <= floor(n/2) [empirical].

Examples

			For n = 6, we count the possible concatenations of the 4 pairs in the list (-6,0),(-5,-1),(-4,-2),(-3,-3) with their negative reversed correspondants (starting with (-6,0,0,6)), giving (6/2 + 1)^2 = 16 quadruples, plus the 3 quadruples (-6,1,1,4), (-6,1,2,3), (-6,2,2,2) and their 3 negative reversed correspondants, giving a total of 22 possibilities. - _Georg Fischer_, Apr 20 2022
		

Crossrefs

Cf. A069905, A158139-A158184 (for length 5..50).

Programs

  • AWK
    # empirical
    function a(n) { s=1; for(i=1; i
    				

Formula

a(n) = (floor(n/2) + 1)^2 + 2*A069905(n). - Georg Fischer, Apr 20 2022

A328863 Number of partitions of 2n that describe the degree sequence of exactly one labeled multigraph with no loops.

Original entry on oeis.org

1, 2, 4, 6, 9, 14, 19, 27, 37, 50, 66, 89, 115, 151, 195, 252, 321, 412, 520, 660, 829, 1042, 1299, 1623, 2010, 2492, 3071, 3783, 4635, 5679, 6922, 8434, 10234, 12406, 14985, 18085, 21751, 26135, 31312, 37471, 44723, 53321, 63415, 75336, 89303, 105734, 124938
Offset: 1

Views

Author

Peter Kagey, Oct 28 2019

Keywords

Comments

Also the number of partitions of 2*n either with largest part equal to n or with three parts and largest part less than n.

Examples

			For n = 4, the a(4) = 6 partitions of 2*4 = 8 that describe a degree sequence of exactly one labeled multigraph are
  4 + 4,
  4 + 3 + 1,
  4 + 2 + 2,
  4 + 2 + 1 + 1,
  4 + 1 + 1 + 1 + 1, and
  3 + 3 + 2.
		

Crossrefs

Formula

a(n) = A000041(n) + A069905(n).

A338200 The number of similarity classes of pointed reflection spaces of residue two in an n-dimensional vector space over GF(2).

Original entry on oeis.org

0, 0, 1, 2, 4, 6, 9, 12, 17, 21, 27, 33, 41, 48, 58, 67, 79, 90, 104, 117, 134, 149, 168, 186, 208, 228, 253, 276, 304, 330, 361, 390, 425, 457, 495, 531, 573, 612, 658, 701, 751, 798, 852, 903, 962, 1017, 1080, 1140, 1208, 1272, 1345, 1414, 1492, 1566, 1649
Offset: 1

Views

Author

Masaya Tomie, Oct 16 2020

Keywords

Crossrefs

Cf. A069905.

Programs

  • Mathematica
    F[n_] := If[EvenQ[n],
      n (n - 2)/8 +
       2*Sum[Length[IntegerPartitions[k, {3}]], {k, 3, n/2}] +
       Length[IntegerPartitions[(n + 2)/2, {3}]],
      2*Floor[(n - 1)/4]*Floor[(n + 1)/4] +
       2*Sum[Length[IntegerPartitions[k, {3}]], {k, 3, (n - 1)/2}] +
       Length[IntegerPartitions[(n + 1)/2, {3}]] +
       Length[IntegerPartitions[(n + 3)/2, {3}]]]
    (* Second program: *)
    LinearRecurrence[{1,1,0,0,-2,0,0,1,1,-1}, {0,0,1,2,4,6,9,12,17,21}, 55] (* Jean-François Alcover, Nov 13 2020 *)
  • PARI
    concat([0,0], Vec((1 + x + x^2 - x^4 - x^5)/((1 - x)^4*(1 + x)^2*(1 + x^2)*(1 + x + x^2)) + O(x^50))) \\ Andrew Howroyd, Oct 29 2020

Formula

a(n) = (1/8)*n*(n-2) + 2*(Sum_{k=3..n/2} p(k,3)) + p((n+2)/2,3) if n is even; a(n) = 2*floor((n-1)/4)*floor((n+1)/4) + 2*(Sum_{k=3..(n-1)/2} p(k,3)) + p((n+1)/2,3) + p((n+3)/2,3) if n is odd, where p(k,3) = A069905(k) is the number of partitions of k into three parts.
From Andrew Howroyd, Oct 29 2020: (Start)
a(n) = a(n-1) + a(n-2) - 2*a(n-5) + a(n-8) + a(n-9) - a(n-10) for n > 10.
G.f.: x^3*(1 + x + x^2 - x^4 - x^5)/((1 - x)^4*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).
(End)

A340445 Number of partitions of n into 3 parts that are not all the same.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 2, 4, 5, 6, 8, 10, 11, 14, 16, 18, 21, 24, 26, 30, 33, 36, 40, 44, 47, 52, 56, 60, 65, 70, 74, 80, 85, 90, 96, 102, 107, 114, 120, 126, 133, 140, 146, 154, 161, 168, 176, 184, 191, 200, 208, 216, 225, 234, 242, 252, 261, 270, 280, 290, 299, 310, 320, 330
Offset: 0

Views

Author

Wesley Ivan Hurt, Jan 07 2021

Keywords

Comments

Conjecturally the same as A230059 (apart from the offset). - R. J. Mathar, Jan 14 2021

Examples

			a(6) = 2; [4,1,1], [3,2,1] ( [2,2,2] not counted ),
a(7) = 4; [5,1,1], [4,2,1], [3,3,1], [3,2,2],
a(8) = 5; [6,1,1], [5,2,1], [4,3,1], [4,2,2], [3,3,2],
a(9) = 6; [7,1,1], [6,2,1], [5,3,1], [4,4,1], [5,2,2], [4,3,2] ( [3,3,3] not counted ).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(1 - KroneckerDelta[i, k, n - i - k]), {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 0, 80}]

Formula

a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} (1 - [k = i = n-i-k]), where [ ] is the (generalized) Iverson bracket.
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} (1 - [k = i] * [2*i = n-k] * [2*k = n-i]), where [ ] is the Iverson bracket.
From Alois P. Heinz, Jan 07 2021: (Start)
G.f.: x^4*(x^2-x-1)/((x+1)*(x^2+x+1)*(x-1)^3).
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6), n>6. (End)
a(n) = A036410(n-1)-1. - Hugo Pfoertner, Jan 09 2021
a(n) + A079978(n) = A069905(n), n>0. - R. J. Mathar, Jan 18 2021
72*a(n) = -16*A099837(n+3) -9*(-1)^n +6*n^2 -31. - R. J. Mathar, Jun 09 2022

A348537 Number of partitions of n into 3 parts whose largest part divides n.

Original entry on oeis.org

0, 0, 1, 1, 0, 2, 0, 2, 1, 2, 0, 4, 0, 3, 1, 4, 0, 5, 0, 5, 1, 5, 0, 7, 0, 6, 1, 7, 0, 8, 0, 8, 1, 8, 0, 10, 0, 9, 1, 10, 0, 11, 0, 11, 1, 11, 0, 13, 0, 12, 1, 13, 0, 14, 0, 14, 1, 14, 0, 16, 0, 15, 1, 16, 0, 17, 0, 17, 1, 17, 0, 19, 0, 18, 1, 19, 0, 20, 0, 20, 1, 20, 0, 22, 0
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 21 2021

Keywords

Crossrefs

Cf. A069905.

Programs

  • Mathematica
    Array[Sum[Sum[(1 - Ceiling[#/(# - i - j)] + Floor[#/(# - i - j)]), {i, j, Floor[(# - j)/2]} ], {j, Floor[#/3]} ] &, 85] (* Michael De Vlieger, Oct 21 2021 *)
  • PARI
    A348537(n) = sum(j=1,(n\3), sum(i=j,((n-j)\2), (1 - ceil(n/(n-i-j)) + floor(n/(n-i-j))))); \\ Antti Karttunen, Feb 18 2023

Formula

a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} (1 - ceiling(n/(n-i-j)) + floor(n/(n-i-j))).

A348538 Number of partitions of n into 3 parts whose smallest part divides n.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 3, 5, 5, 7, 5, 12, 6, 11, 12, 16, 8, 21, 9, 25, 18, 19, 11, 41, 18, 23, 24, 38, 14, 54, 15, 45, 30, 31, 36, 76, 18, 35, 36, 80, 20, 81, 21, 64, 68, 43, 23, 121, 39, 76, 48, 77, 26, 108, 60, 119, 54, 55, 29, 191, 30, 59, 101, 118, 72, 135, 33, 103, 66, 156, 35
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 21 2021

Keywords

Crossrefs

Cf. A069905.

Programs

Formula

a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} (1 - ceiling(n/j) + floor(n/j)).

A350043 Sum of all the parts > 1 in the partitions of n into 3 positive integer parts.

Original entry on oeis.org

0, 2, 7, 15, 24, 36, 58, 75, 104, 138, 175, 217, 277, 328, 399, 477, 560, 650, 766, 869, 1000, 1140, 1287, 1443, 1633, 1806, 2015, 2235, 2464, 2704, 2986, 3247, 3552, 3870, 4199, 4541, 4933, 5300, 5719, 6153, 6600, 7062, 7582, 8073, 8624, 9192, 9775, 10375, 11041, 11674
Offset: 3

Views

Author

Wesley Ivan Hurt, Dec 10 2021

Keywords

Examples

			a(7) = 24; The partitions of 7 into 3 positive integer parts are (1,1,5), (1,2,4), (1,3,3) and (2,2,3). The sum of all the parts > 1 is then 5+2+4+3+3+2+2+3 = 24.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-x*(x^9 - x^8 - 3*x^7 + 5*x^5 + 6*x^4 - 6*x^3 - 11*x^2 - 7*x - 2)/((x + 1)^2*(x^2 + x + 1)^2*(x - 1)^4), {x, 0, 50}], x] (* Wesley Ivan Hurt, Nov 12 2022 *)
  • PARI
    a(n)=if(n==3, 0, -1 - floor((n-1)/2) + n * sum(k=1,floor(n/3), floor((n-3*k+2)/2))) \\ Winston de Greef, Jan 28 2024

Formula

For n >= 4, a(n) = -1 - floor((n-1)/2) + n * Sum_{k=1..floor(n/3)} floor((n-3*k+2)/2).
G.f.: -x^4 * (x^9-x^8-3*x^7+5*x^5+6*x^4-6*x^3-11*x^2-7*x-2) / ((x+1)^2 *(x^2+x+1)^2 *(x-1)^4). - Alois P. Heinz, Dec 13 2021
a(n) = 2*a(n-2)+2*a(n-3)-a(n-4)-4*a(n-5)-a(n-6)+2*a(n-7)+2*a(n-8)-a(n-10). - Wesley Ivan Hurt, Dec 17 2021

A382407 a(n) is the number of partitions n = x + y + z of positive integers such that x*y + y*z + x*z is a perfect square.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 3, 0, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 3, 0, 5, 1, 1, 2, 3, 3, 2, 1, 1, 3, 6, 1, 4, 2, 7, 4, 4, 0, 3, 5, 3, 4, 2, 1, 7, 2, 1, 5, 9, 3, 5, 3, 4, 1, 9, 2, 6, 3, 5, 6, 5, 4, 7, 5, 1, 5, 6, 3, 13, 7, 8, 4, 6, 0, 4, 4, 11, 5, 13, 2
Offset: 1

Views

Author

Felix Huber, Apr 04 2025

Keywords

Comments

a(n) is the number of distinct cuboids with edge length 4*n whose surface area is half of a square.
Conjecture: a(k) = 0 iff k is an element of {2, 4, 8, 13} union A000244 union A005030.

Examples

			The a(14) = 3 partitions [x, y, z] are [1, 1, 12], [1, 4, 9] and [4, 4, 6] because 1*1 + 1*12 + 1*12 = 5^2, 1*4 + 4*9 + 1*9 = 7^2 and 4*4 + 4*6 + 4*6 = 8^2.
		

Crossrefs

Programs

  • Maple
    A382407:=proc(n)
        local a,x,y,z;
        a:=0;
        for x to n/3 do
            for y from x to (n-x)/2 do
                z:=n-x-y;
                if issqr(x*y+x*z+y*z) then
                    a:=a+1
                fi
            od
        od;
        return a
    end proc;
    seq(A382407(n),n=1..87);
Previous Showing 71-80 of 87 results. Next