cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 73 results. Next

A070109 Number of right integer triangles with perimeter n and relatively prime side lengths.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

Right integer triangles have integer areas: see A070142, A051516.
a(n) is nonzero iff n is in A024364.

Examples

			For n=30 there are A005044(30) = 19 integer triangles; only one is right: 5+12+13 = 30, 5^2+12^2 = 13^2; therefore a(30) = 1.
		

Crossrefs

Programs

  • Mathematica
    unitaryDivisors[n_] := Cases[Divisors[n], d_ /; GCD[d, n/d] == 1];
    A078926[n_] := Count[unitaryDivisors[n], d_ /; OddQ[d] && Sqrt[n] < d < Sqrt[2n]];
    a[n_] := If[EvenQ[n], A078926[n/2], 0];
    Table[a[n], {n, 1, 1716}] (* Jean-François Alcover, Oct 04 2021 *)

Formula

a(n) = A078926(n/2) if n is even; a(n)=0 if n is odd.
a(n) = A051493(n) - A070094(n) - A070102(n).
a(n) <= A024155(n).

Extensions

Secondary offset added by Antti Karttunen, Oct 07 2017

A316842 Three-column table read by rows giving primitive integer sides of proper triangles (i,j,k) with i >= j >= k >= 1, j+k > i, gcd(i,j,k) = 1.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 2, 2, 3, 3, 1, 3, 3, 2, 4, 3, 2, 4, 3, 3, 4, 4, 1, 4, 4, 3, 5, 3, 3, 5, 4, 2, 5, 4, 3, 5, 4, 4, 5, 5, 1, 5, 5, 2, 5, 5, 3, 5, 5, 4, 6, 4, 3, 6, 5, 2, 6, 5, 3, 6, 5, 4, 6, 5, 5, 6, 6, 1, 6, 6, 5, 7, 4, 4, 7, 5, 3, 7, 5, 4, 7, 5, 5, 7, 6, 2, 7, 6, 3, 7, 6, 4, 7, 6, 5, 7, 6, 6, 7, 7, 1, 7, 7, 2, 7, 7, 3, 7, 7, 4, 7, 7, 5, 7, 7, 6, 8, 5, 4
Offset: 1

Views

Author

N. J. A. Sloane, Jul 23 2018, following a suggestion from Donald S. McDonald

Keywords

Examples

			Table begins:
[1,1,1],
[2,2,1],
[3,2,2],
[3,3,1],
[3,3,2],
[4,3,2],
[4,3,3],
[4,4,1],
[4,4,3],
[5,3,3],
[5,4,2],
...
		

Crossrefs

There are A123323(k) rows that begin with k.
The three columns are A316846, A316847, A316848.
A316850 is a compressed version.
See A316841 for all triples (including imprimitive triples).
See A316852 and A317181 & A317183 for perimeter and area.
Other related sequences: A051493, A070080, A070081, A070082, A070110.

A070201 Number of integer triangles with perimeter n having integral inradius.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 3, 0, 0, 0, 2, 0, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 8, 0, 0, 0, 1, 0, 3
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n) = #{k | A070083(k) = n and A070200(k) = exact inradius};
a(n) = A070203(n) + A070204(n);
a(n) = A070205(n) + A070206(n) + A024155(n);
a(odd) = 0.

Examples

			a(36)=2, as there are two integer triangles with integer inradius having perimeter=32:
First: [A070080(368), A070081(368), A070082(368)] = [9,10,17], for s = A070083(368)/2 = (9+10+17)/2 = 18: inradius = sqrt((s-9)*(s-10)*(s-17)/s) = sqrt(9*8*1/18) = sqrt(4) = 2; therefore A070200(368) = 2.
2nd: [A070080(370), A070081(370), A070082(370)] = [9,12,15], for s = A070083(370)/2 = (9+12+15)/2 = 18: inradius = sqrt((s-9)*(s-12)*(s-15)/s) = sqrt(9*6*3/18) = sqrt(9) = 3; therefore A070200(370) = 3.
		

Crossrefs

Programs

  • Ruby
    def A(n)
      cnt = 0
      (1..n / 3).each{|a|
        (a..(n - a) / 2).each{|b|
          c = n - a - b
          if a + b > c
            s = n / 2r
            t = (s - a) * (s - b) * (s - c) / s
            if t.denominator == 1
              t = t.to_i
              cnt += 1 if Math.sqrt(t).to_i ** 2 == t
            end
          end
        }
      }
      cnt
    end
    def A070201(n)
      (1..n).map{|i| A(i)}
    end
    p A070201(100) # Seiichi Manyama, Oct 06 2017

A070094 Number of acute integer triangles with perimeter n and relatively prime side lengths.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 2, 1, 3, 1, 2, 2, 5, 2, 5, 3, 3, 4, 6, 3, 6, 4, 7, 6, 10, 4, 10, 7, 8, 7, 10, 7, 14, 8, 12, 8, 17, 10, 17, 12, 13, 14, 20, 12, 21, 14, 18, 16, 25, 15, 23, 18, 22, 20, 30, 16, 32, 21, 29, 23, 32, 21, 38, 27, 33, 26, 43, 25
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n) = A051493(n) - A070102(n) - A070109(n).

Examples

			For n=10 there are A005044(10) = 2 integer triangles: [2,4,4] and [3,3,4]; both are acute, but GCD(2,4,4)>1, therefore a(9) = 1.
		

Crossrefs

A070098 Number of integer triangles with perimeter n which are acute and isosceles.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 4, 4, 5, 4, 5, 5, 6, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 9, 10, 10, 11, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 14, 15, 15, 16, 15
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

Equivalently, the number of obtuse isosceles integer triangles with base n. - Charlie Marion, Jun 18 2019

Examples

			For n=9 there are A005044(9)=3 integer triangles: [1,4,4], [2,3,4] and [3,3,3]; both isosceles are also acute.
		

Crossrefs

Programs

  • Magma
    [Floor(k/2)-Floor(k/(2 + Sqrt(2)))-((k + 1) mod 2): k in [1..76]]; // Marius A. Burtea, Jun 21 2019

Formula

a(n) = A070093(n)-A024154(n); a(n) = A059169(n)-A070106(n).
a(n) = floor(n/2) - floor(n/(2 + sqrt(2))) - ((n + 1) mod 2). - David Pasino, Jun 27 2016
a(n) = A004526(n-1) - A183138(n). - R. J. Mathar, May 22 2019

A070102 Number of obtuse integer triangles with perimeter n and relatively prime side lengths.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 2, 1, 3, 2, 3, 2, 5, 3, 6, 2, 8, 5, 9, 5, 9, 6, 11, 6, 14, 9, 14, 9, 17, 11, 19, 12, 19, 15, 23, 13, 27, 18, 26, 16, 32, 20, 33, 21, 34, 26, 40, 23, 42, 29, 42, 29, 50, 32, 53, 35, 48, 41, 58, 37, 64, 45, 60, 42, 71
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n) = A051493(n) - A070094(n) - A070109(n).

Examples

			For n=9 there are A005044(9)=3 integer triangles: [1,4,4], [2,3,4] and [3,3,3]; only one of them is obtuse: 2^2+3^2<16=4^2 and GCD(2,3,4)=1, therefore a(9)=1.
		

Crossrefs

A070092 Number of isosceles integer triangles with perimeter n and prime side lengths.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 0, 1, 0, 1, 0, 0, 1, 2, 0, 2, 1, 2, 0, 1, 0, 2, 0, 1, 1, 2, 0, 3, 1, 3, 0, 2, 0, 3, 0, 1, 1, 3, 0, 3, 0, 2, 0, 1, 0, 3, 0, 1, 1, 2, 0, 3, 1, 4, 0, 2, 0, 4, 0, 1, 0, 1, 0, 4, 1, 3, 0, 2, 0, 3, 0, 1, 1, 3, 0, 4, 1, 4, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			For n=17 there are A005044(17)=8 integer triangles: [1,8,8], [2,7,8], [3,6,8], [3,7,7], [4,5,8], [4,6,7], [5,5,7] and [5,6,6]: four are isosceles: [1<8=8], [3<7=7], [5=5<7] and [5<6=6], but only two of them consist of primes, therefore a(17)=2.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(PrimePi[i] - PrimePi[i - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[n - i - k] - PrimePi[n - i - k - 1]) (KroneckerDelta[i, k] + KroneckerDelta[i, n - i - k] - KroneckerDelta[k, n - i - k]) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}] (* Wesley Ivan Hurt, May 14 2019 *)

Formula

a(n) = A070088(n) - A070090(n).
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * ([i = k] + [i = n-i-k] - [k = n-i-k]) * A010051(i) * A010051(k) * A010051(n-i-k), where [] is the Iverson bracket. - Wesley Ivan Hurt, May 14 2019

A070103 Number of obtuse integer triangles with perimeter n and prime side lengths.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 3, 0, 2, 0, 2, 0, 1, 0, 3, 0, 2, 0, 1, 0, 2, 0, 0, 0, 0, 0, 3, 0, 1, 0, 4, 0, 5, 0, 4, 0, 2, 0, 1, 0, 1, 0, 2, 0, 2, 0, 3, 0, 1, 0, 6, 0, 4, 0, 6, 0, 6, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			For n=11 there are A005044(11)=4 integer triangles: [1,5,5], [2,4,5], [3,3,5] and [3,4,4]; only one of the two obtuses ([2,4,5] and [3,3,5]) consists of primes, therefore a(11)=1.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(PrimePi[i] - PrimePi[i - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[n - i - k] - PrimePi[n - i - k - 1]) (1 - Sign[Floor[(i^2 + k^2)/(n - i - k)^2]]) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}] (* Wesley Ivan Hurt, May 13 2019 *)

Formula

a(n) = A070093(n) - A070098(n).
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} (1 - sign(floor((i^2 + k^2)/(n-i-k)^2))) * sign(floor((i + k)/(n-i-k+1))) * A010051(i) * A010051(k) * A010051(n-i-k). - Wesley Ivan Hurt, May 13 2019

A070090 Number of scalene integer triangles with perimeter n and prime side lengths.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 2, 0, 2, 0, 2, 0, 0, 0, 4, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0, 0, 4, 0, 1, 0, 3, 0, 4, 0, 3, 0, 1, 0, 3, 0, 2, 0, 1, 0, 3, 0, 4, 0, 1, 0, 6, 0, 4, 0, 5, 0, 6, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			For n=15 there are A005044(15)=7 integer triangles: [1,7,7], [2,6,7], [3,5,7], [3,6,6], [4,4,7], [4,5,6] and [5,5,5]: three are scalene: [2<6<7], [3<5<7] and [4<5<6], but only one consists of primes, therefore a(15)=1.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(PrimePi[i] - PrimePi[i - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[n - i - k] - PrimePi[n - i - k - 1])*Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k + 1, Floor[(n - k - 1)/2]}], {k, Floor[(n - 1)/3]}], {n, 100}] (* Wesley Ivan Hurt, May 13 2019 *)

Formula

a(n) = A070088(n) - A070092(n).
a(n) = Sum_{k=1..floor((n-1)/3)} Sum_{i=k+1..floor((n-k-1)/2)} sign(floor((i+k)/(n-i-k+1))) * A010051(i)A010051(k)%20*%20A010051(n-i-k).%20-%20_Wesley%20Ivan%20Hurt">* A010051(k) * A010051(n-i-k). - _Wesley Ivan Hurt, May 13 2019

A070091 Number of isosceles integer triangles with perimeter n and relatively prime side lengths.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 2, 1, 1, 1, 3, 1, 3, 1, 2, 2, 4, 2, 5, 2, 2, 2, 6, 2, 5, 3, 5, 3, 7, 2, 8, 4, 4, 4, 6, 3, 9, 4, 6, 4, 10, 4, 11, 5, 6, 5, 12, 4, 10, 5, 8, 6, 13, 4, 10, 6, 8, 7, 15, 4, 15, 7, 10, 8, 12, 6, 17, 8, 10, 6, 18, 6, 18, 9, 10, 9, 14, 6, 20, 8, 13
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n) = A051493(n) - A005044(n-6).

Examples

			For n=15 there are A005044(15)=7 integer triangles: [1,7,7], [2,6,7], [3,5,7], [3,6,6], [4,4,7], [4,5,6] and [5,5,5]: four are isosceles: [1<7=7], [3<6=6], [4=4<7] and [5=5=5], but GCD(3,6,6)>1 and GCD(5,5,5)>1, therefore a(15)=2.
		

Crossrefs

Programs

  • Mathematica
    m = 81 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1] & // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]] &] ;
    a[n_] := Count[triangles, t_ /; Total[t] == n && Length[Union[t]] < 3 && GCD @@ t == 1];
    Table[a[n], {n, 1, m}] (* Jean-François Alcover, Oct 05 2021 *)
Previous Showing 51-60 of 73 results. Next