cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A173598 Period 6: repeat [1, 8, 7, 2, 4, 5].

Original entry on oeis.org

1, 8, 7, 2, 4, 5, 1, 8, 7, 2, 4, 5, 1, 8, 7, 2, 4, 5, 1, 8, 7, 2, 4, 5, 1, 8, 7, 2, 4, 5, 1, 8, 7, 2, 4, 5, 1, 8, 7, 2, 4, 5, 1, 8, 7, 2, 4, 5, 1, 8, 7, 2, 4, 5, 1, 8, 7, 2, 4, 5, 1, 8, 7, 2, 4, 5, 1, 8, 7, 2, 4, 5, 1, 8, 7, 2, 4, 5, 1, 8, 7, 2, 4, 5, 1, 8
Offset: 0

Views

Author

Paul Curtz, Nov 23 2010

Keywords

Comments

For A141425 = 1,2,4,5,7,8 permutations, see A153130. a(n) is based on A022998. Successive differences are linked to A070366.

Crossrefs

Programs

Formula

a(n) = A166138(n) mod 9.
a(2n+1) + a(2n+2) = 9.
G.f.: (1+8*x+7*x^2+2*x^3+4*x^4+5*x^5) / ((1-x)*(1+x)*(1+x+x^2)*(x^2-x+1)). - R. J. Mathar, Mar 08 2011
From Wesley Ivan Hurt, Jun 23 2016: (Start)
a(n) = a(n-6) for n>5.
a(n) = (9 - cos(n*Pi) - 6*cos(2*n*Pi/3) + 2*sqrt(3)*sin(n*Pi/3))/2. (End)

A234038 Smallest positive integer solution x of 9*x - 2^n*y = 1.

Original entry on oeis.org

1, 1, 1, 1, 9, 25, 57, 57, 57, 57, 569, 1593, 3641, 3641, 3641, 3641, 36409, 101945, 233017, 233017, 233017, 233017, 2330169, 6524473, 14913081, 14913081, 14913081, 14913081, 149130809, 417566265, 954437177, 954437177, 954437177
Offset: 0

Views

Author

Wolfdieter Lang, Feb 17 2014

Keywords

Comments

The solution of the linear Diophantine equation 9*x - 2^n*y = 1 with smallest positive x is x=a(n), n>= 0, and the corresponding y is given by y(n) = 5^(n+3) (mod 9) = A070366(n+3) with o.g.f. (8-4*x-2*x^2+7*x^3)/((1-x+x^2)*(1-x)*(1+x)) (derived from the one given in A070366). This is the periodic sequence with period [8, 4, 2, 1, 5, 7].

Examples

			n = 0:  9*1 - 1*8 = 1; n = 3:  9*1 - 8*1  = 1.
a(4) = (1 + 2^4*5)/9 = 9.
		

Crossrefs

Cf. A070366, A007583 (see the Feb 15 2013 comment).

Programs

  • Mathematica
    A234038[n_] := Ceiling[(1 + 2^n*Mod[5^(n - 3), 9])/9]; Array[A234038, 50, 0] (* or *)
    LinearRecurrence[{3, -2, -8, 24, -16}, {1, 1, 1, 1, 9}, 50] (* Paolo Xausa, Nov 05 2024 *)

Formula

a(n) = (1 + 2^n*(5^(n-3)(mod 9)))/3^2, n >= 3.
O.g.f.: (1-2*x+8*x^3-8*x^4)/((1-x)*(1-4*x^2)*(1-2*x+4*x^2)) (derived from the one for y(n) given above in a comment).
a(n) = 2*(a(n-1) - 4*a(n-3) + 8*a(n-4)) - 1, n >= 4, a(0)=a(1)=a(2)=a(3) = 1 (from the y(n) recurrence given in A070366).

A253298 Digital root for the following sequences, F(4*n)/F(4); F(12*n)/F(12); F(20*n)/F(20), where the pattern increases by 8, ad infinitum, with the Fibonacci numbers F = A000045.

Original entry on oeis.org

1, 7, 3, 5, 5, 3, 7, 1, 9, 8, 2, 6, 4, 4, 6, 2, 8, 9, 1, 7, 3, 5, 5, 3, 7, 1, 9, 8, 2, 6, 4, 4, 6, 2, 8, 9, 1, 7, 3, 5, 5, 3, 7, 1, 9, 8, 2, 6, 4, 4, 6, 2, 8, 9, 1, 7, 3, 5, 5, 3, 7, 1, 9, 8, 2, 6, 4, 4, 6, 2, 8, 9
Offset: 1

Views

Author

Peter M. Chema, Dec 30 2014

Keywords

Comments

Cyclical and palindromic in two parts with periodicity 18: {1, 7, 3, 5, 5, 3, 7, 1, 9, 8, 2, 6, 4, 4, 6, 2, 8, 9}.
Digital root of the period is 9, its mean and median is 5, and its product is (9!)^2.
See A253368 for the initial motivation for this sequence.
From Peter M. Chema, Jul 04 2016: (Start)
A composite of three respective digital root sequences in alternation: a "halving sequence" of 1, 5, 7, 8, 4, 2, a "doubling sequence" of 7, 5, 1, 2, 4, 8, and a three-six-nine circuit of 3, 3, 9, 6, 6, 9.
Also the digital root of A000045(4n)/3 or A004187(n). In general terms, sequences defined by Fib(x*n)/ Fib(x) where x=(8*a-4) all share the same digital root (e.g., F(4*n)/F(4); F(12*n)/F(12); F(20*n)/F(20); F(28*n)/F(28); F(36*n)/F(36), etc.) (End)

Crossrefs

Programs

  • Mathematica
    f[n_] := Mod[ Fibonacci[ 12n]/144, 9]; Array[f, 5*18] (* Robert G. Wilson v, Jan 23 2015 *)
    LinearRecurrence[{1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1},{1, 7, 3, 5, 5, 3, 7, 1, 9, 8, 2, 6, 4, 4, 6, 2, 8},72] (* Ray Chandler, Aug 12 2015 *)

Formula

a(n) = A010888(A253368(n)).
G.f.: x*(1 + 7*x + 3*x^2 + 5*x^3 + 5*x^4 + 3*x^5 + 7*x^6 + x^7 + 9*x^8 + 8*x^9 + 2*x^10 + 6*x^11 + 4*x^12 + 4*x^13 + 6*x^14 + 2*x^15 + 8*x^16 + 9*x^17)/(1 - x^18). - Vincenzo Librandi, Mar 28 2016

Extensions

Edited. Numbers and name changed to fit A253368. Formula adapted. Cross reference added. - Wolfdieter Lang, Jan 28 2015
Name generalized by Peter M. Chema, Jul 04 2016

A321643 a(n) = 5*2^n - (-1)^n.

Original entry on oeis.org

4, 11, 19, 41, 79, 161, 319, 641, 1279, 2561, 5119, 10241, 20479, 40961, 81919, 163841, 327679, 655361, 1310719, 2621441, 5242879, 10485761, 20971519, 41943041, 83886079, 167772161, 335544319, 671088641, 1342177279, 2684354561, 5368709119, 10737418241, 21474836479
Offset: 0

Views

Author

Paul Curtz, Dec 03 2018

Keywords

Crossrefs

Programs

  • GAP
    List([0..30],n->5*2^n-(-1)^n); # Muniru A Asiru, Dec 05 2018
    
  • Maple
    [5*2^n-(-1)^n$n=0..30]; # Muniru A Asiru, Dec 05 2018
  • Mathematica
    a[n_] := 5*2^n - (-1)^n; Array[a, 30, 0] (* Amiram Eldar, Dec 03 2018 *)
  • PARI
    Vec((4 + 7*x) / ((1 + x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Dec 04 2018
    
  • Python
    for n in range(0,30): print(5*2**n - (-1)**n) # Stefano Spezia, Dec 05 2018

Formula

a(n+2) - a(n) = a(n+1) + a(n) = 15*2^n, n >= 0.
a(n) - 2*a(n-1) = period 2: repeat [3, -3], n > 0, a(0)=4, a(1)=11.
a(n+1) = 10*A051049(n) + period 2: repeat [1, 9].
a(n) = 12*2^n - A321483(n), n >= 0.
a(n) = 2^(n+2) + 3*A001045(n), n >= 0.
a(n) == A070366(n+4) (mod 9).
From Colin Barker, Dec 04 2018: (Start)
G.f.: (4 + 7*x) / ((1 + x)*(1 - 2*x)).
a(n) = a(n-1) + 2*a(n-2) for n > 1. (End)
E.g.f.: exp(-x)*(5*exp(3*x) - 1). - Elmo R. Oliveira, Aug 17 2024

A132708 Period 6: repeat [4, 2, 1, -4, -2, -1].

Original entry on oeis.org

4, 2, 1, -4, -2, -1, 4, 2, 1, -4, -2, -1, 4, 2, 1, -4, -2, -1, 4, 2, 1, -4, -2, -1, 4, 2, 1, -4, -2, -1, 4, 2, 1, -4, -2, -1, 4, 2, 1, -4, -2, -1, 4, 2, 1, -4, -2, -1, 4, 2, 1, -4, -2, -1, 4, 2, 1, -4, -2, -1, 4, 2, 1, -4, -2, -1, 4, 2, 1, -4, -2, -1, 4, 2, 1, -4, -2, -1, 4, 2, 1, -4, -2, -1, 4, 2, 1, -4, -2, -1, 4, 2, 1, -4, -2, -1, 4, 2, 1, -4, -2, -1
Offset: 0

Views

Author

Paul Curtz, Nov 16 2007

Keywords

Comments

Old definition was: "First differences of 5^n mod 9".

Crossrefs

Cf. A070366 (5^n mod 9).

Programs

Formula

G.f.: (x^2 + 2*x + 4)/(x^3 + 1). - Chai Wah Wu, Jun 04 2016
From Wesley Ivan Hurt, Jun 28 2016: (Start)
a(n) + a(n-3) = 0 for n>2.
a(n) = a(n-6) for n>5.
a(n) = cos(n*Pi) + 3*cos(n*Pi/3) + sqrt(3)*sin(n*Pi/3). (End)

Extensions

Name changed by Wesley Ivan Hurt, Jun 28 2016
Previous Showing 11-15 of 15 results.