cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 54 results. Next

A346510 a(n) is the number of nontrivial divisors of A346507(n) ending with 1.

Original entry on oeis.org

1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 4, 2
Offset: 1

Views

Author

Stefano Spezia, Jul 21 2021

Keywords

Examples

			a(42) = 4 since there are 4 nontrivial divisors of A346507(42) = 2541 ending with 1: 11, 21, 121 and 231.
		

Crossrefs

Cf. A017281, A070824, A346388 (ending with 5), A346389 (ending with 6), A346392, A346507, A346508, A346509.

Programs

  • Mathematica
    b={}; For[n=1, n<=500, n++, For[k=1, kMax[b], AppendTo[b, 10n+1]]]]; (* A346507 *) a={}; For[i =1, i<=Length[b], i++, AppendTo[a, Length[Drop[Select[Divisors[Part[b, i]], (Mod[#, 10]==1&)], -1]]-1]]; a
  • PARI
    f(n) = sumdiv(n, d, (d>1) && (d(f(x)), [1..5000])) \\ Michel Marcus, Jul 28 2021
    
  • Python
    from sympy import divisors
    def f(n): return sum(d%10 == 1 for d in divisors(n)[1:-1])
    def A346507upto(lim): return sorted(set(a*b for a in range(11, lim//11+1, 10) for b in range(a, lim//a+1, 10)))
    print(list(map(f, A346507upto(5000)))) # Michael S. Branicky, Jul 31 2021

Formula

a(n) = A346392(A346507(n)) - 1.

A382325 Numbers with a record ratio of proper factorizations to nontrivial divisors.

Original entry on oeis.org

4, 16, 32, 64, 128, 192, 256, 384, 512, 576, 768, 864, 1024, 1152, 1536, 1728, 2304, 3456, 4608, 5184, 5760, 6912, 8640, 9216, 10368, 11520, 13824, 17280, 20736, 23040, 25920, 27648, 34560, 41472, 51840, 62208, 69120, 82944, 103680, 138240, 165888, 172800
Offset: 1

Views

Author

Charles L. Hohn, Mar 21 2025

Keywords

Comments

Numbers k that give a record value for A028422(k)/A070824(k).
a(n) = 0 (mod 4), and with prime factors of terms clustering around the smallest primes, it is observed that as n increases, the gcd of a(n)..a(oo) remains among the largest divisors of a(n).

Examples

			a(1)=4: |{{2, 2}}| / |{2}| = 1/1.
a(2)=16: |{{2, 2, 2, 2}, {2, 2, 4}, {2, 8}, {4, 4}}| / |{2, 4, 8}| = 4/3.
a(3)=32: |{{2, 2, 2, 2, 2}, {2, 2, 2, 4}, {2, 2, 8}, {2, 4, 4}, {2, 16}, {4, 8}}| / |{2, 4, 8, 16}| = 6/4.
		

Crossrefs

Programs

  • PARI
    f_count(x, f=List())={my(r=x/if(#f, vecprod(Vec(f)), 1)); if(r==1, return(if(#f, 1, 0))); my(d, c=0); fordiv(r, d, if(d==1 || d==x || (#f && dmx, mx=m; print1(x, ", ")))

A382326 Numbers with a record ratio of nontrivial divisors to prime factors (counted with multiplicity).

Original entry on oeis.org

4, 6, 12, 24, 30, 60, 120, 180, 210, 360, 420, 840, 1260, 2310, 2520, 4620, 7560, 9240, 13860, 27720, 55440, 60060, 83160, 110880, 120120, 138600, 166320, 180180, 277200, 360360, 720720, 1081080, 1441440, 1801800, 2162160, 3063060, 3603600, 5405400, 6126120
Offset: 1

Views

Author

Charles L. Hohn, Mar 21 2025

Keywords

Comments

Numbers k that give a record value for A070824(k)/A001222(k).

Examples

			a(1) = 4: |{2}| / |{2, 2}| = 1/2.
a(2) = 6: |{2, 3}| / |{2, 3}| = 2/2.
a(3) = 12: |{2, 3, 4, 6}| / |{2, 2, 3}| = 4/3.
		

Crossrefs

Subsequence of A025487.

Programs

  • PARI
    my(mx=0); for(x=2, 10^5, my(f=factor(x), m=(numdiv(f)-2)/bigomega(f)); if(m>mx, mx=m; print1(x, ", ")))

A095808 Number of ways to write n in the form m + (m+1) + ... + (m+k-1) + (m+k) + (m+k-1) + ... + (m+1) + m with integers m>= 1, k>=1. Or, number of divisors d of 4n-1 with 0 < (d-1)^2 < 4n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 2, 0, 0, 2, 0, 0, 1, 1, 1, 2, 0, 0, 1, 1, 1, 1, 0, 0, 3, 0, 1, 2, 0, 1, 1, 0, 0, 2, 2, 0, 1, 1, 0, 3, 0, 1, 2, 0, 1, 1, 0, 0, 3, 1, 0, 2, 1, 0, 3, 1, 0, 1, 0, 2, 2, 0, 1, 1, 1, 1, 1, 0, 0, 5, 1, 1, 1, 0, 1, 1, 1, 0, 3, 1, 0, 2, 0, 1, 3, 0, 0, 2, 1, 1, 3
Offset: 1

Views

Author

Alfred Heiligenbrunner, Jun 15 2004

Keywords

Comments

n = m + (m+1) + ... + (m+k-1) + (m+k) + (m+k-1) + ... + (m+1) + m means n = k^2 + m*(2k+1) or 4n-1 = (2k+1)*(4m+2k-1). So if 4n-1 disparts into two odd factors a*b, then k = (a-1)/2, m=(n-k^2)/(2k+1) give the solution of the origin equation. We only count solutions with k^2 < n, such that m>0. This means we are taking into account only factors a < 2n+1.
Note that a(n) = 0 if 4n-1 is prime. - Alfred Heiligenbrunner, Mar 01 2016

Examples

			a(16) = 2 because 16 = 5+6+5 and 16 = 1+2+3+4+3+2+1.
The trivial case 16=16 (k=0, m=n) is not counted. The cases m=0, e.g. 16 = 0+1+2+3+4+3+2+1+0 are not counted. The cases m<0 e.g. 16 = -4+-3+-2+-1+0+1+2+3+4+5+6+5+4+3+2+1+0+-1+-2+-3+-4 are not counted.
		

Crossrefs

Programs

  • Maple
    seq((numtheory[tau](4*n-1)-2)/2, n=1..100); # Ridouane Oudra, Jan 18 2025
  • Mathematica
    h1 = Table[count = 0; For[k = 1, k^2 < n, k++, If[Mod[n - k^2, 2k + 1] == 0, count++ ]]; count, {n, 100}] - or - h2 = Table[Length[Select[Divisors[4n - 1], ((# - 1)^2 < 4n) &]] - 1, {n, 100}]
    a[n_] := (DivisorSigma[0, 4*n-1] - 2)/2; Array[a, 100] (* Amiram Eldar, Jan 28 2025 *)
  • PARI
    a(n) = (numdiv(4*n-1) - 2)/2; \\ Amiram Eldar, Jan 28 2025

Formula

From Ridouane Oudra, Jan 18 2025: (Start)
a(n) = (tau(4*n-1) - 2)/2.
a(n) = A070824(4*n-1)/2.
a(n) = A078703(n) - 1. (End)
Sum_{k=1..n} a(k) = (log(n) + 2*gamma - 5 + 4*log(2))*n/4 + O(n^(1/3)*log(n)), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 27 2025

A161116 a(n) is the number of nontrivial positive divisors of 2n+3.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 1, 2, 0, 0, 2, 2, 0, 2, 0, 0, 4, 0, 1, 2, 0, 2, 2, 0, 0, 4, 2, 0, 2, 0, 0, 4, 2, 0, 3, 0, 2, 2, 0, 2, 2, 2, 0, 4, 0, 0, 6, 0, 0, 2, 0, 2, 4, 2, 1, 2, 2, 0, 2, 0, 2, 6, 0, 0, 2, 2, 2, 4, 0, 0, 4, 2, 0, 2, 2, 0, 6, 0, 1, 4, 0, 4, 2, 0, 0, 2
Offset: 0

Views

Author

Vladimir Shevelev, Jun 02 2009

Keywords

Comments

a(n)=0 iff n is in A067076, i.e., 2n+3 is prime; a(n) is the number of positive integers of the form (n-3k)/(2k+1), 1<=k<=n/3.

Examples

			Since for n=3 we have 2n+3=9 and only nontrivial divisor of 9 is 3, then a(3)=1.
		

Crossrefs

Programs

Formula

For n>=1, a(n)=A160973(n)+A079978(n). [Vladimir Shevelev, Jun 07 2009]
a(n) = A070824(2n+3).

Extensions

Edited by Charles R Greathouse IV, Oct 12 2009
More terms from Michel Marcus, Feb 08 2016

A163838 a(n) = (n-th composite) * (number of nontrivial divisors of n-th composite).

Original entry on oeis.org

4, 12, 16, 9, 20, 48, 28, 30, 48, 72, 80, 42, 44, 144, 25, 52, 54, 112, 180, 128, 66, 68, 70, 252, 76, 78, 240, 252, 176, 180, 92, 384, 49, 200, 102, 208, 324, 110, 336, 114, 116, 600, 124, 252, 320, 130, 396, 272, 138, 420, 720, 148, 300, 304, 154, 468, 640, 243
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 05 2009, Aug 06 2009

Keywords

Comments

The trivial divisors of the n-th composite are 1 and the n-th composite.

Examples

			a(1) =  4 (= 4*1);
a(2) = 12 (= 6*2);
a(3) = 16 (= 8*2);
a(4) =  9 (= 9*1);
a(5) = 20 (= 10*2);
a(6) = 48 (= 12*4).
		

Crossrefs

Programs

  • Maple
    A002808 := proc(n) option remember; local a; if n = 1 then 4; else for a from procname(n-1)+1 do if not isprime(a) then return a; end if; end do: end if; end proc: A070824 := proc(n) numtheory[tau](n)-2 ; end: A144925 := proc(n) A070824(A002808(n)) ; end: A163838 := proc(n) A144925(n)*A002808(n) ; end: seq(A163838(n),n=1..80) ; # R. J. Mathar, Oct 10 2009
  • Mathematica
    # (DivisorSigma[0,#]-2)&/@Select[Range[100],CompositeQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 23 2021 *)

Formula

a(n) = A002808(n)*A144925(n).

Extensions

56 replaced with 112, 310 replaced with 320, and 468 inserted by R. J. Mathar, Oct 10 2009

A259977 Number of proper divisors of A005381(n).

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 1, 2, 2, 4, 2, 2, 2, 7, 2, 6, 4, 2, 1, 4, 2, 4, 2, 6, 2, 2, 4, 5, 2, 6, 2, 6, 4, 4, 2, 6, 3, 2, 2, 2, 2, 6, 2, 4, 2, 2, 2, 10, 4, 7, 6, 2, 2, 8, 2, 4, 4, 2, 2, 14, 1, 2, 2, 4, 2, 10, 2, 6, 2, 2, 6, 6, 2, 2, 2, 13, 2, 2, 4, 4, 4, 6, 2, 10, 2, 10, 2, 8, 6, 2, 1, 6, 4, 4, 4, 8, 2, 2, 2, 6
Offset: 1

Views

Author

N. J. A. Sloane, Jul 12 2015, following a suggestion from R. P. Boas, May 19 1974

Keywords

Crossrefs

Programs

A291108 Expansion of Sum_{k>=2} k^2*x^(2*k)/(1 - x^k).

Original entry on oeis.org

0, 0, 0, 4, 0, 13, 0, 20, 9, 29, 0, 65, 0, 53, 34, 84, 0, 130, 0, 145, 58, 125, 0, 273, 25, 173, 90, 265, 0, 399, 0, 340, 130, 293, 74, 614, 0, 365, 178, 609, 0, 735, 0, 625, 340, 533, 0, 1105, 49, 754, 298, 865, 0, 1183, 146, 1113, 370, 845, 0, 1859, 0, 965, 580, 1364, 194, 1743, 0, 1465, 538, 1599, 0, 2550, 0, 1373, 884
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 17 2017

Keywords

Comments

Sum of squares of divisors of n except 1 and n^2 (sum of squares of nontrivial divisors of n).

Examples

			a(6) = 13 because 6 has 4 divisors {1, 2, 3, 6} among which 2 are nontrivial {2, 3} and 2^2 + 3^2 = 13.
		

Crossrefs

Programs

  • Mathematica
    nmax = 75; Rest[CoefficientList[Series[Sum[k^2 x^(2 k)/(1 - x^k), {k, 2, nmax}], {x, 0, nmax}], x]]
    Join[{0}, Table[DivisorSigma[2, n] - n^2 - 1, {n, 2, 75}]]
  • PARI
    A291108(n) = sumdiv(n,d,if((1==d)||(n==d),0,d^2)); \\ Antti Karttunen, Jan 22 2025

Formula

G.f.: Sum_{k>=2} k^2*x^(2*k)/(1 - x^k).
a(n) = A001157(n) - A000290(n) - 1 for n > 1.
a(n) = A067558(n) - 1 for n > 1.
a(n) = A005063(n) if n is a semiprime (A001358).
a(n) = 0 if n is a prime or 1 (A008578).
a(n) = n if n is a square of prime (A001248).
a(p^k) = (p^(2*k) - p^2)/(p^2 - 1) for p is a prime and k > 0.

A328337 The number whose binary indices are the nontrivial divisors of n (greater than 1 and less than n).

Original entry on oeis.org

0, 0, 0, 2, 0, 6, 0, 10, 4, 18, 0, 46, 0, 66, 20, 138, 0, 294, 0, 538, 68, 1026, 0, 2222, 16, 4098, 260, 8266, 0, 16950, 0, 32906, 1028, 65538, 80, 133422, 0, 262146, 4100, 524954, 0, 1056870, 0, 2098186, 16660, 4194306, 0, 8423598, 64, 16777746, 65540
Offset: 1

Views

Author

Gus Wiseman, Oct 15 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The nontrivial divisors of 18 are {2, 3, 6, 9}, so a(18) = 2^1 + 2^2 + 2^5 + 2^8 = 294.
		

Crossrefs

Removing zeros gives binary indices of rows of A163870.
The version for all divisors is A034729.
The version for proper divisors is A247146.

Programs

  • Mathematica
    Table[Total[(2^DeleteCases[Divisors[n],1|n])/2],{n,100}]
  • Python
    from sympy import divisors
    def A328337(n): return sum(1<<(d-1) for d in divisors(n,generator=True) if 1Chai Wah Wu, Jul 15 2022

Formula

A000120(a(n)) = A070824(n).
A070939(a(n)) = A032742(n).
A001511(a(n)) = A107286(n).

A328459 Sorted positions of first appearances in A328458 (maximum run-length of nontrivial divisors) of each positive integer in the image.

Original entry on oeis.org

1, 2, 6, 12, 60, 420, 504, 840, 2520, 27720, 360360, 720720, 4084080
Offset: 0

Views

Author

Gus Wiseman, Oct 17 2019

Keywords

Examples

			The sequence of terms > 1 together with their nontrivial divisors begins:
    2: {}
    6: {2,3}
   12: {2,3,4,6}
   60: {2,3,4,5,6,10,12,15,20,30}
  420: {2,3,4,5,6,7,10,12,14,15,20,21,28,30,35,42,60,70,84,105,140,210}
  504: {2,3,4,6,7,8,9,12,14,18,21,24,28,36,42,56,63,72,84,126,168,252}
		

Crossrefs

Positions of first appearances in A328458.
The version for all divisors is A051451.

Programs

  • Mathematica
    dav=Table[Switch[n,1,1,_,Max@@Length/@Split[DeleteCases[Divisors[n],1|n],#2==#1+1&]],{n,1000}];
    Table[Position[dav,i][[1,1]],{i,Union[dav]}]//Sort

Extensions

a(12) from Robert Israel, Mar 31 2023
Previous Showing 41-50 of 54 results. Next