cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A080675 a(n) = (5*4^n - 8)/6.

Original entry on oeis.org

2, 12, 52, 212, 852, 3412, 13652, 54612, 218452, 873812, 3495252, 13981012, 55924052, 223696212, 894784852, 3579139412, 14316557652, 57266230612, 229064922452, 916259689812, 3665038759252, 14660155037012, 58640620148052, 234562480592212, 938249922368852
Offset: 1

Views

Author

N. J. A. Sloane, Mar 02 2003

Keywords

Comments

These numbers have a simple binary pattern: 10,1100,110100,11010100,1101010100, ... i.e., the n-th term has a binary expansion 1(10){n-1}0, that is, there are n-1 10's between the most significant 1 and the least significant 0.

Crossrefs

a(n) = A072197(n-1) - 1 = A014486(|A106191(n)|). a(n) = A079946(A020988(n-2)) for n>=2. Cf. also A122229.

Programs

Formula

a(1)=2, a(2)=12, a(n)=5*a(n-1)-4*a(n-2). - Harvey P. Dale, Oct 16 2012

Extensions

Further comments added by Antti Karttunen, Sep 14 2006

A206374 a(n) = (7*4^n - 1)/3.

Original entry on oeis.org

2, 9, 37, 149, 597, 2389, 9557, 38229, 152917, 611669, 2446677, 9786709, 39146837, 156587349, 626349397, 2505397589, 10021590357, 40086361429, 160345445717, 641381782869, 2565527131477, 10262108525909, 41048434103637, 164193736414549, 656774945658197
Offset: 0

Views

Author

Brad Clardy, Feb 07 2012

Keywords

Comments

First bisection of A062092 and A081253, second bisection of A097163. - Bruno Berselli, Feb 12 2012
Except a(0)=2, this is the 3rd row of table A178415. - Michel Marcus, Apr 13 2015

Crossrefs

Cf. A002450, A006666, A072197; A002042 (first differences), A178415, A347834.

Programs

  • Magma
    [(7*4^n-1)/3 : n in [0..30]];
    
  • Mathematica
    Table[(7(4^n) - 1)/3, {n, 0, 24}] (* Alonso del Arte, Feb 11 2012 *)
    CoefficientList[Series[(2-x)/(1-5*x+4*x^2),{x,0,30}],x] (* or *) LinearRecurrence[{5,-4},{2,9},30] (* Vincenzo Librandi, Mar 20 2012 *)
  • PARI
    vector(20,n,(7*4^(n-1)-1)/3) \\ Derek Orr, Apr 12 2015

Formula

G.f.: (2-x)/(1-5*x+4*x^2). - Bruno Berselli, Feb 12 2012
a(n) = A083597(n)+1. - Bruno Berselli, Feb 12 2012
a(n) = 4*a(n-1)+1 for n>0, a(0)=2. - Bruno Berselli, Oct 22 2015
a(n) = 7*A002450(n) + 2. - Yosu Yurramendi, Jan 24 2017
A006666(a(n)) = 2*n+11 for n > 0. - Juan Miguel Barga Pérez, Jun 18 2020
a(n) = 5*a(n-1) - 4*a(n-2) for n >= 2. - Wesley Ivan Hurt, Jun 30 2020
a(n) = A178415(3, n) = A347834(4, n-1), arrays, for n >= 1.- Wolfdieter Lang, Nov 29 2021

A211016 Triangle read by rows: T(n,k) = number of squares and rectangles of area 2^(k-1) after 2^n stages in the toothpick structure of A139250, n>=1, k>=1, assuming the toothpicks have length 2.

Original entry on oeis.org

0, 0, 4, 8, 12, 4, 40, 52, 12, 4, 168, 212, 52, 12, 4, 680, 852, 212, 52, 12, 4, 2728, 3412, 852, 212, 52, 12, 4, 10920, 13652, 3412, 852, 212, 52, 12, 4, 43688, 54612, 13652, 3412, 852, 212, 52, 12, 4, 174760, 218452, 54612, 13652, 3412, 852, 212, 52, 12, 4
Offset: 1

Views

Author

Omar E. Pol, Sep 18 2012

Keywords

Comments

All internal regions in the toothpick structure are squares and rectangles.

Examples

			For n = 5 in the toothpick structure after 2^5 stages we have that:
T(5,1) = 168 is the number of squares of size 1 X 1.
T(5,2) = 212 is the number of rectangles of size 1 X 2.
T(5,3) = 52 is the total number of squares of size 2 X 2 and of rectangles of size 1 X 4.
T(5,4) = 12 is the number of rectangles of size 2 X 4.
T(5,5) = 4 is the number of rectangles of size 2 X 8.
Triangle begins:
       0;
       0,      4;
       8,     12,     4;
      40,     52,    12,     4;
     168,    212,    52,    12,    4;
     680,    852,   212,    52,   12,   4;
    2728,   3412,   852,   212,   52,  12,   4;
   10920,  13652,  3412,   852,  212,  52,  12,  4;
   43688,  54612, 13652,  3412,  852, 212,  52, 12,  4;
  174760, 218452, 54612, 13652, 3412, 852, 212, 52, 12, 4;
		

Crossrefs

Row sums give 0 together with A145655.

Formula

T(n,k) = A211008(2^n,k) = 4*A211019(n,k).
T(n,1) = 4*A020988(n-2), n>=2.

A211019 Triangle read by rows: T(n,k) = number of squares and rectangles of area 2^(k-1) after 2^n stages in the toothpick structure of A139250, divided by 4, n>=1, k>=1, assuming the toothpicks have length 2.

Original entry on oeis.org

0, 0, 1, 2, 3, 1, 10, 13, 3, 1, 42, 53, 13, 3, 1, 170, 213, 53, 13, 3, 1, 682, 853, 213, 53, 13, 3, 1, 2730, 3413, 853, 213, 53, 13, 3, 1, 10922, 13653, 3413, 853, 213, 53, 13, 3, 1, 43690, 54613, 13653, 3413, 853, 213, 53, 13, 3, 1, 174762, 218453
Offset: 1

Views

Author

Omar E. Pol, Sep 24 2012

Keywords

Comments

All internal regions in the toothpick structure are squares and rectangles.

Examples

			Triangle begins:
0;
0,         1;
2,         3,     1;
10,       13,     3,    1;
42,       53,    13,    3,   1;
170,     213,    53,   13,   3,   1;
682,     853,   213,   53,  13,   3,  1;
2730,   3413,   853,  213,  53,  13,  3,  1;
10922, 13653,  3413,  853, 213,  53, 13,  3, 1;
43690, 54613, 13653, 3413, 853, 213, 53, 13, 3, 1;
		

Crossrefs

Row sums give 0 together with A014825.

Formula

T(n,k) = A211016(n,k)/4.
T(n,1) = A020988(n-2), n>=2.

A356327 Replace 2^k in binary expansion of n with A039834(1+k).

Original entry on oeis.org

0, 1, -1, 0, 2, 3, 1, 2, -3, -2, -4, -3, -1, 0, -2, -1, 5, 6, 4, 5, 7, 8, 6, 7, 2, 3, 1, 2, 4, 5, 3, 4, -8, -7, -9, -8, -6, -5, -7, -6, -11, -10, -12, -11, -9, -8, -10, -9, -3, -2, -4, -3, -1, 0, -2, -1, -6, -5, -7, -6, -4, -3, -5, -4, 13, 14, 12, 13, 15, 16
Offset: 0

Views

Author

Rémy Sigrist, Aug 03 2022

Keywords

Comments

This sequence has similarities with A022290, and is related to negaFibonacci representations.

Examples

			For n = 13:
- 13 = 2^3 + 2^2 + 2^0,
- so a(13) = A039834(4) + A039834(3) + A039834(1) = -3 + 2 + 1 = 0.
		

Crossrefs

Programs

  • Mathematica
    Table[Reverse[#].Fibonacci[-Range[Length[#]]] &@ IntegerDigits[n, 2], {n, 0, 69}] (* Rémy Sigrist, Aug 05 2022 *)
  • PARI
    a(n) = { my (v=0, k); while (n, n-=2^k=valuation(n, 2); v+=fibonacci(-1-k)); return (v) }
    
  • Python
    from sympy import fibonacci
    def A356327(n): return sum(fibonacci(-a)*int(b) for a, b in enumerate(bin(n)[:1:-1],start=1)) # Chai Wah Wu, Aug 31 2022

Formula

a(n) = Sum_{k>=0} A030308(n,k)*A039834(1+k).
a(A215024(n)) = n.
a(A215025(n)) = -n.
a(A003714(n)) = A309076(n).
Empirically:
- a(n) = 0 iff n = 0 or n belongs to A072197,
- a(n) = 1 iff n belongs to A020989,
- a(2*A215024(n)) = -A000201(n) for n > 0,
- a(3*A215024(n)) = -A060143(n),
- a(floor(A215024(n)/2)) = -A060143(n),
- a(4*A215024(n)) = A001950(n) for n > 0,
- a(floor(A215024(n)/4)) = A189663(n) for n > 0,
- a(2*A215025(n)) = A026351(n),
- a(3*A215025(n)) = A019446(n) for n > 0,
- a(floor(A215025(n)/2)) = A019446(n) for n > 0,
- a(4*A215025(n)) = -A004957(n),
- a(floor(A215025(n)/4)) = -A060144(n+1) for n >= 0.

A178414 Least odd number in the Collatz (3x+1) preimage of odd numbers not a multiple of 3.

Original entry on oeis.org

1, 3, 9, 7, 17, 11, 25, 15, 33, 19, 41, 23, 49, 27, 57, 31, 65, 35, 73, 39, 81, 43, 89, 47, 97, 51, 105, 55, 113, 59, 121, 63, 129, 67, 137, 71, 145, 75, 153, 79, 161, 83, 169, 87, 177, 91, 185, 95, 193, 99, 201, 103, 209, 107, 217, 111, 225, 115, 233, 119, 241, 123, 249
Offset: 1

Views

Author

T. D. Noe, May 28 2010

Keywords

Comments

The odd non-multiples of 3 are 1, 5, 7, 11,... (A007310). The odd multiples of 3 have no odd numbers their Collatz pre-image. The next odd number in the Collatz iteration of a(2n) is 6n-1. The next odd number in the Collatz iteration of a(2n+1) is 6n+1. For each non-multiple of 3, there are an infinite number of odd numbers in its Collatz pre-image. For example:
Odd pre-images of 1: 1, 5, 21, 85, 341,... (A002450)
Odd pre-images of 5: 3, 13, 53, 213, 853,... (A072197)
Odd pre-images of 7: 9, 37, 149, 597, 2389,...
Odd pre-images of 11: 7, 29, 117, 469, 1877,...(A072261)
In each case, the pre-image sequence is t(k+1) = 4*t(k) + 1 with t(0)=a(n). The array of pre-images is in A178415.
a(n) = A047529(P(n)), with the permutation P(n) = A006368(n-1) + 1, for n >= 1. This shows that this sequence gives the numbers {1, 3, 7} (mod 8) uniquely. - Wolfdieter Lang, Sep 21 2021

Crossrefs

Programs

  • Mathematica
    Riffle[1+8*Range[0,50], 3+4*Range[0,50]]

Formula

a(n) = (n - 1)*(3 - (-1)^n) + 1. [Bogart B. Strauss, Sep 20 2013, adapted to the offset by Matthew House, Feb 14 2017]
From Matthew House, Feb 14 2017: (Start)
G.f.: x*(1 + 3*x + 7*x^2 + x^3)/((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4). (End)
From Philippe Deléham, Nov 06 2023: (Start)
a(2*n) = 4*n-1, a(2*n+1) = 8*n+1.
a(n) = 2*A022998(n-1)+1.
a(n) = 2*A114752(n)-1. (End)

A211018 Triangle read by rows: T(n,k) = total area of all squares and rectangles of area 2^(k-1) after 2^n stages in the toothpick structure of A139250, divided by 8, n>=1, k>=1, assuming the toothpicks have length 2.

Original entry on oeis.org

0, 0, 1, 1, 3, 2, 5, 13, 6, 4, 21, 53, 26, 12, 8, 85, 213, 106, 52, 24, 16, 341, 853, 426, 212, 104, 48, 32, 1365, 3413, 1706, 852, 424, 208, 96, 64, 5461, 13653, 6826, 3412, 1704, 848, 416, 192, 128, 21845, 54613, 27306, 13652, 6824, 3408, 1696, 832, 384, 256
Offset: 1

Views

Author

Omar E. Pol, Sep 24 2012

Keywords

Comments

All internal regions in the toothpick structure are squares and rectangles. The area of every internal region is a power of 2.

Examples

			0;
0,        1;
1,        3,    2;
5,       13,    6,    4;
21,      53,   26,   12,    8;
85,     213,  106,   52,   24,  16;
341,    853,  426,  212,  104,  48,  32;
1365,  3413, 1706,  852,  424, 208,  96,  64;
5461, 13653, 6826, 3412, 1704, 848, 416, 192, 128;
		

Crossrefs

Rows sums give A006516. Right border gives A131577.

Formula

T(n,k) = A211017(n,k)/8.
T(n,1) = A002450(n-2), n>=2.

A324036 Modified reduced Collatz map fs acting on positive odd integers.

Original entry on oeis.org

1, 5, 1, 11, 7, 17, 3, 23, 13, 29, 5, 35, 19, 41, 7, 47, 25, 53, 9, 59, 31, 65, 11, 71, 37, 77, 13, 83, 43, 89, 15, 95, 49, 101, 17, 107, 55, 113, 19, 119, 61, 125, 21, 131, 67, 137, 23, 143, 73, 149, 25, 155, 79, 161, 27, 167, 85, 173, 29, 179, 91, 185, 31, 191, 97, 197, 33, 203, 103, 209
Offset: 0

Views

Author

Nicolas Vaillant, Philippe Delarue, Wolfdieter Lang, May 08 2019

Keywords

Comments

This is a modification of the reduced Collatz map given in A075677.
The Collatz conjecture is that iteration of the map fs leads to 1 for all positive odd integers.
In the Vaillant-Delarue (V-D) reference the present map fs: Odd -> Odd, 2*n+1 -> a(n) = fs(2*n+1), for n >= 0, is called f_{s}. The differences from b(n) = A075677(n+1) = fCr(2*n+1) (called f_{cr} in V-D) occur for the positions n = 2 + 4*k, for k >= 1: b(2 + 4*k) = b(k) = A075677(k+1) but a(2 + 4*k) = 1 + 2*k, which differs.
The advantage of the map fs (or a) over fCr (or b) is an explicit formula over a recurrence.
Additional steps are introduced in the iteration of fs versus fCr. This leads to an incomplete binary tree, called CfsTree, given in A324038. No such tree is available for fCr.
Such additional steps in fs can only occur after odd numbers congruent to 5 modulo 8: fs(5 + 8*k) = a(2 + 4*k) = 1 + 2*k and fs(1 + 2*k) = a(k). On the other hand, fCr(5 + 8*k) = b(2 + 4*k) = b(k).
The appearance of exactly N consecutive steps in fs versus fCr, for N >= 2, can be shown recursively to start with the odd numbers O(N;k) = 1 + 4*O(N-1;k), for N >= 3, with input O(2;k) = 53 + (4^3)*k. These are the numbers O(N;k) = A072197(N) + A000302(N+1)*k, for N >= 2. Therefore only one additional step follows directly after an odd number 5 (mod 8) if it is not of the O(N;k) type for N >= 2.
The minimal number of iterations of function fs acting on 2*n + 1 (or a acting on n), for n >= 0, to reach 1 is given in A324037 (if for very large n the number 1 should not be reached A324037(n) is set to -1).

Examples

			Iteration of fs on 11: 11, 17, 13, 3, 5, 1, whereas for fCr: 11, 17, 13 , 5, 1. The additional step (N = 1) occurs for 13 == 5 (mod 8), and 13 does not belong to the O(N;k) sets for N >= 2.
The first additional N = 2 steps occur for 53 = a(26): 53, 13, 3, 5, 1, versus iteration of fCr: 53, 5, 1. Such N = 2 steps occur precisely after 53 + 64*k as 13 + 16*k and 3 + 4*k.
The first additional N = 3 steps occur for 213 = a(106): 213, 53, 13, 3, 5, 1 versus 213, 5, 1 for fCr.
The first additional N = 4 steps occur for 853 = a(426): 853, 213, 53, 13, 3, 5, 1 versus 853, 5, 1 for fCr.
		

Crossrefs

Programs

  • PARI
    a(n) = my(m=Mod(n,4)); if (m==0, (2 + 3*n)/2, if (m==2, n/2, 2 + 3*n)); \\ Michel Marcus, Aug 10 2023

Formula

a(n) = fs(1 + 2*n) = (2 + 3*n)/2 if n == 0 (mod 4), a(n) = 2 + 3*n, for n == 1 or 3 (mod 4), and a(n) = n/2 if n == 2 (mod 4). This corresponds to fs(1 + 8*k) = 1 + 6*k, fs(3 + 8*k) = 5 + 12*k, fs(5 + 8*k) = 1 + 2*k, and fs(7 + 8*k) = 11 + 12*k, for k >= 0.
Conjectures from Colin Barker, Oct 14 2019: (Start)
G.f.: (1 + 5*x + x^2 + 11*x^3 + 5*x^4 + 7*x^5 + x^6 + x^7) / ((1 - x)^2*(1 + x)^2*(1 + x^2)^2).
a(n) = 2*a(n-4) - a(n-8) for n>7.
(End)

Extensions

More terms from Michel Marcus, Aug 10 2023

A086462 Expansion of (1+x)(1+4x)/((1-x)(1-4x)).

Original entry on oeis.org

1, 10, 50, 210, 850, 3410, 13650, 54610, 218450, 873810, 3495250, 13981010, 55924050, 223696210, 894784850, 3579139410, 14316557650, 57266230610, 229064922450, 916259689810, 3665038759250, 14660155037010, 58640620148050
Offset: 0

Views

Author

Paul Barry, Jul 21 2003

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+x)(1+4x)/((1-x)(1-4x)),{x,0,30}],x] (* or *) LinearRecurrence[{5,-4},{1,10,50},30] (* Harvey P. Dale, May 27 2023 *)
  • PARI
    a(n) = 0^n + 10*(4^n-1)/3; \\ Ruud H.G. van Tol, Oct 11 2023

Formula

a(0) = 1, a(1) = 10, a(2) = 50, a(n) = 5*a(n-1) - 4*a(n-2).
a(n) = 10*(4^n-1)/3 + 0^n = 10*A002450(n) + 0^n = 10*A001045(2*n) + 0^n.

A266753 Decimal representation of the n-th iteration of the "Rule 163" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 4, 18, 74, 298, 1194, 4778, 19114, 76458, 305834, 1223338, 4893354, 19573418, 78293674, 313174698, 1252698794, 5010795178, 20043180714, 80172722858, 320690891434, 1282763565738, 5131054262954, 20524217051818, 82096868207274, 328387472829098
Offset: 0

Views

Author

Robert Price, Jan 17 2016

Keywords

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Programs

  • Mathematica
    rule=163; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]],2],{k,1,rows}]   (* Decimal Representation of Rows *)

Formula

Conjectures from Colin Barker, Jan 20 2016 and Apr 20 2019: (Start)
a(n) = 5*a(n-1)-4*a(n-2) for n>2.
G.f.: (1-x+2*x^2) / ((1-x)*(1-4*x)).
(End)
Empirical a(n) = (7*4^n - 4)/6 for n>1. - Colin Barker, Nov 25 2016 and Apr 20 2019
a(n) = 4*a(n-1) + 2, n>1, conjectured. - Yosu Yurramendi, Jan 22 2017
a(n) = 2*A020988(n) - A020988(n-1) = A020988(n) + 2^(2n-1) for n > 0, conjectured. - Yosu Yurramendi, Jan 24 2017 [n range correction - Karl V. Keller, Jr., May 07 2022]
a(n) = A072197(n-1) + A002450(n), n > 0, conjectured. - Yosu Yurramendi, Mar 03 2017

Extensions

Removed an unjustified claim that Colin Barker's conjectures are correct. Removed a program based on a conjecture. - N. J. A. Sloane, Jun 13 2022
Previous Showing 11-20 of 30 results. Next