A368266
Expansion of e.g.f. exp(-2*x) / (1 - x*exp(x)).
Original entry on oeis.org
1, -1, 4, 1, 60, 393, 4498, 54689, 773384, 12268369, 216328614, 4195769433, 88776964444, 2034936319817, 50232646818890, 1328570248040497, 37481046375146640, 1123486426007081505, 35657224567565828302, 1194561018775753556777, 42125545306641497600036
Offset: 0
-
CoefficientList[Series[Exp[-2*x]/ (1 - x*Exp[x]),{x,0,20}],x]Range[0,20]! (* Stefano Spezia, Feb 21 2025 *)
-
a(n) = n!*sum(k=0, n, (n-k-2)^k/k!);
A375395
Expansion of e.g.f. 1 / (exp(-x^3/6) - x).
Original entry on oeis.org
1, 1, 2, 7, 32, 180, 1210, 9520, 85680, 867160, 9749600, 120582000, 1626994600, 23782158400, 374367193200, 6314037129400, 113591474796800, 2171267969270400, 43944509528920000, 938808209417478400, 21111813400597920000, 498498097342637392000
Offset: 0
-
A375395 := proc(n)
n!*add(((n-3*k+1)/6)^k/k!,k=0..floor(n/3)) ;
end proc:
seq(A375395(n),n=0..60) ; # R. J. Mathar, Aug 23 2024
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(exp(-x^3/6)-x)))
-
a(n) = n!*sum(k=0, n\3, ((n-3*k+1)/6)^k/k!);
A377741
E.g.f. satisfies A(x) = exp(x) * (1 + x * A(x))^3.
Original entry on oeis.org
1, 4, 37, 583, 13225, 394681, 14659537, 652829857, 33937422001, 2018665692721, 135274646371561, 10087017309339433, 828563190097478425, 74348364577760978329, 7236649495742795579809, 759466703902106082652321, 85492204279344776678878945, 10275933748282019792253453025
Offset: 0
A305133
E.g.f.: (1-x) / (exp(-x) - x).
Original entry on oeis.org
1, 1, 3, 16, 113, 996, 10537, 130054, 1834513, 29111896, 513307601, 9955832514, 210652214665, 4828548335092, 119193293536969, 3152465052989326, 88935973854834593, 2665836978234855984, 84608363388300429601, 2834484567764492239354, 99956558270008377397081, 3701159405682998540166796, 143571313108884280622221913, 5822409005523822986360056326
Offset: 0
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 16*x^3/3! + 113*x^4/4! + 996*x^5/5! + 10537*x^6/6! + 130054*x^7/7! + 1834513*x^8/8! + 29111896*x^9/9! + ...
RELATED TABLE.
The table of coefficients of x^k in exp(n*x) * A(x) begins:
n=0: [1, (1), 3/2, 8/3, 113/24, 83/10, 10537/720, 65027/2520, ...];
n=1: [(1), 2, (3), 29/6, 25/3, 1757/120, 929/36, 45863/1008, ...];
n=2: [1, (3), 11/2, (9), 361/24, 1559/60, 729/16, 101107/1260, ...];
n=3: [1, 4, (9), 97/6, (82/3), 1863/40, 3637/45, 714319/5040, ...];
n=4: [1, 5, 27/2, (82/3), 1169/24, (251/3), 103801/720, 632897/2520, ...];
n=5: [1, 6, 19, 87/2, (251/3), 17821/120, (5147/20), 2250499/5040, ...];
n=6: [1, 7, 51/2, 197/3, 3305/24, (5147/20), 65633/144, (14293/18), ...];
n=7: [1, 8, 33, 569/6, 652/3, 51893/120, (14293/18), 7078303/5040, ...]; ...
in which terms along the diagonals (enclosed in parenthesis) are equal:
[x^n] exp((n+1)*x) * A(x) = [x^(n+1)] exp(n*x) * A(x) for n >= 0.
-
With[{nn=30},CoefficientList[Series[(1-x)/(Exp[-x]-x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 15 2022 *)
-
{a(n) = n!*polcoeff( (1-x) / (exp(-x +x*O(x^n)) - x), n)}
for(n=0,30,print1(a(n),", "))
A368237
Expansion of e.g.f. 1/(exp(-x) - 3*x).
Original entry on oeis.org
1, 4, 31, 361, 5605, 108781, 2533447, 68836279, 2137543177, 74673228457, 2898494302651, 123757822391083, 5764497138070381, 290878956151681405, 15806942065094830735, 920336494043393536591, 57157621592164505969425, 3771643127452655490322513
Offset: 0
-
a[n_] := n! Sum[3^(n - k) (n - k + 1)^k / k!, {k, 0, n}];Table[a[n],{n,0,17}] (* or *) a[0] = 1;a[n_] := 3n a[n - 1] + Sum[(-1)^(k - 1) Binomial[n, k] a[n - k], {k, 1, n}];Table[a[n],{n,0,17}] (* James C. McMahon, Dec 18 2023 *)
-
a(n) = n!*sum(k=0, n, 3^(n-k)*(n-k+1)^k/k!);
-
my(x='x+O('x^25)); Vec(serlaplace(1/(exp(-x) - 3*x))) \\ Michel Marcus, Dec 18 2023
A375610
Expansion of e.g.f. 1 / (exp(-x) - x^3).
Original entry on oeis.org
1, 1, 1, 7, 49, 241, 1681, 18481, 192193, 2028097, 26854561, 400419361, 6074016961, 100260498625, 1847840462833, 36061045391281, 738757221740161, 16244778936351361, 380460397886975809, 9341152506044172865, 241084169507148900481, 6559259107807215358081
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(exp(-x)-x^3)))
-
a(n) = n!*sum(k=0, n\3, (k+1)^(n-3*k)/(n-3*k)!);
A341093
Triangular array read by rows. T(n,k) is the number of partial functions on [n] with index k, n=0 implies k=1, otherwise n >= 1, 1 <= k <= n.
Original entry on oeis.org
1, 2, 7, 2, 37, 21, 6, 261, 232, 108, 24, 2301, 2935, 1760, 660, 120, 24343, 42396, 30630, 14880, 4680, 720, 300455, 692055, 586572, 335790, 139440, 37800, 5040, 4238153, 12631200, 12387592, 8008896, 3959760, 1438080, 342720, 40320
Offset: 0
Array begins
1;
2;
7, 2;
37, 21, 6;
261, 232, 108, 24;
2301, 2935, 1760, 660, 120;
24343, 42396, 30630, 14880, 4680, 720;
...
-
nn = 8; np = Exp[NestList[x Exp[#] &, x, nn]]; fp = Exp[Log[1/(1 - NestList[x Exp[#] &, x Exp[x], nn])]];Map[Select[#, # > 0 &] &,Prepend[Table[Range[0, nn]! CoefficientList[Series[(fp[[k + 1]] - fp[[k]])*(np[[k + 1]]) + (fp[[k + 1]])*(np[[k + 1]] - np[[k]]) - (fp[[k + 1]] - fp[[k]]) (np[[k + 1]] - np[[k]]), {x, 0, nn}], x], {k, 1, nn - 1}], Range[0, nn]! CoefficientList[Series[1/(1 - x Exp[x])*Exp[x], {x, 0, nn}], x]] // Transpose] // Grid
Comments