A336343
Number of ways to choose a strict partition of each part of a strict composition of n.
Original entry on oeis.org
1, 1, 1, 4, 6, 11, 26, 39, 78, 142, 320, 488, 913, 1558, 2798, 5865, 9482, 16742, 28474, 50814, 82800, 172540, 266093, 472432, 790824, 1361460, 2251665, 3844412, 7205416, 11370048, 19483502, 32416924, 54367066, 88708832, 149179800, 239738369, 445689392
Offset: 0
The a(1) = 1 through a(5) = 11 ways:
(1) (2) (3) (4) (5)
(2,1) (3,1) (3,2)
(1),(2) (1),(3) (4,1)
(2),(1) (3),(1) (1),(4)
(1),(2,1) (2),(3)
(2,1),(1) (3),(2)
(4),(1)
(1),(3,1)
(2,1),(2)
(2),(2,1)
(3,1),(1)
Multiset partitions of partitions are
A001970.
Splittings of strict partitions are
A072706.
Set partitions of strict partitions are
A294617.
Splittings of partitions with distinct sums are
A336131.
Cf.
A008289,
A011782,
A304786,
A318683,
A318684,
A319794,
A323583,
A336128,
A336130,
A336132,
A336133.
Partitions:
- Partitions of each part of a partition are
A063834.
- Compositions of each part of a partition are
A075900.
- Strict partitions of each part of a partition are
A270995.
- Strict compositions of each part of a partition are
A336141.
Strict partitions:
- Partitions of each part of a strict partition are
A271619.
- Compositions of each part of a strict partition are
A304961.
- Strict partitions of each part of a strict partition are
A279785.
- Strict compositions of each part of a strict partition are
A336142.
Compositions:
- Partitions of each part of a composition are
A055887.
- Compositions of each part of a composition are
A133494.
- Strict partitions of each part of a composition are
A304969.
- Strict compositions of each part of a composition are
A307068.
Strict compositions:
- Partitions of each part of a strict composition are
A336342.
- Compositions of each part of a strict composition are
A336127.
- Strict partitions of each part of a strict composition are
A336343.
- Strict compositions of each part of a strict composition are
A336139.
-
strptn[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&];
Table[Length[Join@@Table[Tuples[strptn/@ctn],{ctn,Join@@Permutations/@strptn[n]}]],{n,0,10}]
-
\\ here Q(N) gives A000009 as a vector.
Q(n) = {Vec(eta(x^2 + O(x*x^n))/eta(x + O(x*x^n)))}
seq(n)={my(b=Q(n)); [subst(serlaplace(p),y,1) | p<-Vec(prod(k=1, n, 1 + y*x^k*b[1+k] + O(x*x^n)))]} \\ Andrew Howroyd, Apr 16 2021
A355383
Number of pairs (y, v), where y is a partition of n and v is a sub-multiset of y whose cardinality equals the number of distinct parts in y.
Original entry on oeis.org
1, 1, 2, 3, 6, 10, 16, 26, 42, 64, 100, 150, 224, 330, 482, 697, 999, 1418, 1996, 2794, 3879, 5355, 7343, 10018, 13583, 18338, 24618, 32917, 43790, 58043, 76591, 100716, 131906, 172194, 223966, 290423, 375318, 483668, 621368, 796138, 1017146
Offset: 0
The a(0) = 1 through a(5) = 10 pairs:
()() (1)(1) (2)(2) (3)(3) (4)(4) (5)(5)
(11)(1) (21)(21) (31)(31) (41)(41)
(111)(1) (22)(2) (32)(32)
(211)(11) (311)(11)
(211)(21) (311)(31)
(1111)(1) (221)(21)
(221)(22)
(2111)(11)
(2111)(21)
(11111)(1)
The version for compositions is
A355384.
The homogeneous version w/o containment is
A355385, compositions
A355388.
A001970 counts multiset partitions of partitions.
A063834 counts partitions of each part of a partition.
-
Table[Sum[Length[Union[Subsets[y,{Length[Union[y]]}]]],{y,IntegerPartitions[n]}],{n,0,15}]
A355385
Number of pairs (y, v) of integer partitions of n where the length of v equals the number of distinct parts in y.
Original entry on oeis.org
1, 1, 2, 3, 7, 12, 25, 43, 81, 141, 243, 409, 699, 1132, 1844, 2995, 4744, 7408, 11655, 17839, 27509, 41546, 62879, 93537, 139974, 205547, 302714, 440097, 640968, 921774, 1327538, 1891548, 2696635, 3809860, 5380257, 7540778, 10561566, 14687109, 20408170, 28183998, 38882009
Offset: 0
The a(0) = 1 through a(5) = 10 pairs:
()() (1)(1) (2)(2) (3)(3) (4)(4) (5)(5)
(11)(2) (21)(21) (31)(31) (41)(41)
(111)(3) (31)(22) (41)(32)
(22)(4) (32)(41)
(211)(31) (32)(32)
(211)(22) (311)(41)
(1111)(4) (311)(32)
(221)(41)
(221)(32)
(2111)(41)
(2111)(32)
(11111)(5)
The inhomogeneous version with containment and multiplicity is
A339006.
The inhomogeneous version with containment is
A355383.
The inhomogeneous version with containment for compositions is
A355384.
The version for compositions is
A355388.
A001970 counts multiset partitions of partitions.
A063834 counts partitions of each part of a partition.
A323583 counts splittings of partitions.
-
Table[Length[Select[Tuples[IntegerPartitions[n],2],Length[Union[#[[1]]]]==Length[#[[2]]]&]],{n,0,15}]
-
\\ P gives A008284 and R gives A116608 as g.f.'s.
P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
R(n,y) = {prod(k=1, n, 1 + y/(1 - x^k) - y + O(x*x^n))}
seq(n) = {my(g=Vec(P(n,y)), h=Vec(R(n,y))); vector(n+1, i, my(p=g[i], q=h[i]); sum(j=0, poldegree(q), polcoef(p,j)*polcoef(q,j)))} \\ Andrew Howroyd, Dec 31 2022
A129838
Number of up/down (or down/up) compositions of n into distinct parts.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 5, 6, 8, 11, 18, 21, 30, 38, 52, 78, 97, 128, 170, 222, 285, 421, 510, 683, 872, 1148, 1440, 1893, 2576, 3209, 4151, 5313, 6784, 8615, 10969, 13755, 18573, 22713, 29173, 36536, 46705, 57899, 73696, 91076, 114777, 148531, 182813, 228938, 287042
Offset: 0
From _Gus Wiseman_, Jan 15 2022: (Start)
The a(1) = 1 through a(8) = 8 up/down strict compositions (non-strict A025048):
(1) (2) (3) (4) (5) (6) (7) (8)
(1,2) (1,3) (1,4) (1,5) (1,6) (1,7)
(2,3) (2,4) (2,5) (2,6)
(1,3,2) (3,4) (3,5)
(2,3,1) (1,4,2) (1,4,3)
(2,4,1) (1,5,2)
(2,5,1)
(3,4,1)
The a(1) = 1 through a(8) = 8 down/up strict compositions (non-strict A025049):
(1) (2) (3) (4) (5) (6) (7) (8)
(2,1) (3,1) (3,2) (4,2) (4,3) (5,3)
(4,1) (5,1) (5,2) (6,2)
(2,1,3) (6,1) (7,1)
(3,1,2) (2,1,4) (2,1,5)
(4,1,2) (3,1,4)
(4,1,3)
(5,1,2)
(End)
The case of permutations is
A000111.
This is the up/down case of
A032020.
Cf.
A003056,
A008289,
A008965,
A015723,
A072706,
A128761,
A218074,
A345165,
A345170,
A345195,
A349800.
-
g:= proc(u, o) option remember;
`if`(u+o=0, 1, add(g(o-1+j, u-j), j=1..u))
end:
b:= proc(n, k) option remember; `if`(k<0 or n<0, 0,
`if`(k=0, `if`(n=0, 1, 0), b(n-k, k)+b(n-k, k-1)))
end:
a:= n-> add(b(n, k)*g(k, 0), k=0..floor((sqrt(8*n+1)-1)/2)):
seq(a(n), n=0..60); # Alois P. Heinz, Dec 22 2021
-
whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]y[[m+1]]],{m,1,Length[y]-1}];
Table[Length[Select[Join@@Permutations/@ Select[IntegerPartitions[n],UnsameQ@@#&],whkQ]],{n,0,15}] (* Gus Wiseman, Jan 15 2022 *)
Name changed from "alternating" to "up/down" by
Gus Wiseman, Jan 15 2022
A333148
Number of compositions of n whose non-adjacent parts are weakly decreasing.
Original entry on oeis.org
1, 1, 2, 4, 7, 12, 19, 30, 46, 69, 102, 149, 214, 304, 428, 596, 823, 1127, 1532, 2068, 2774, 3697, 4900, 6460, 8474, 11061, 14375, 18600, 23970, 30770, 39354, 50153, 63702, 80646, 101783, 128076, 160701, 201076, 250933, 312346, 387832, 480409, 593716, 732105, 900810, 1106063, 1355336, 1657517, 2023207, 2464987, 2997834, 3639464
Offset: 0
The a(1) = 1 through a(6) = 19 compositions:
(1) (2) (3) (4) (5) (6)
(11) (12) (13) (14) (15)
(21) (22) (23) (24)
(111) (31) (32) (33)
(121) (41) (42)
(211) (131) (51)
(1111) (212) (141)
(221) (222)
(311) (231)
(1211) (312)
(2111) (321)
(11111) (411)
(1311)
(2121)
(2211)
(3111)
(12111)
(21111)
(111111)
For example, (2,3,1,2) is such a composition, because the non-adjacent pairs of parts are (2,1), (2,2), (3,2), all of which are weakly decreasing.
The case of normal sequences appears to be
A028859.
A version for ordered set partitions is
A332872.
The case of strict compositions is
A333150.
The version for strictly decreasing parts is
A333193.
Standard composition numbers (
A066099) of these compositions are
A334966.
Cf.
A056242,
A059204,
A072706,
A107429,
A115981,
A329398,
A332578,
A332669,
A332673,
A332724,
A332834.
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,{_,x_,,y_,_}/;y>x]&]],{n,0,15}]
-
def a333148(n): return number_of_partitions(n) + sum( Partitions(m, max_part=l, length=k).cardinality() * Partitions(n-m-l^2, min_length=k+2*l).cardinality() for l in range(1, (n+1).isqrt()) for m in range((n-l^2-2*l)*l//(l+1)+1) for k in range(ceil(m/l), min(m,n-m-l^2-2*l)+1) ) # Max Alekseyev, Oct 31 2024
A333192
Number of compositions of n with strictly increasing run-lengths.
Original entry on oeis.org
1, 1, 2, 2, 4, 5, 7, 10, 14, 16, 24, 31, 37, 51, 67, 76, 103, 129, 158, 199, 242, 293, 370, 450, 538, 652, 799, 953, 1147, 1376, 1635, 1956, 2322, 2757, 3271, 3845, 4539, 5336, 6282, 7366, 8589, 10046, 11735, 13647, 15858, 18442, 21354, 24716, 28630, 32985
Offset: 0
The a(1) = 1 through a(8) = 14 compositions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (122) (33) (133) (44)
(211) (311) (222) (322) (233)
(1111) (2111) (411) (511) (422)
(11111) (3111) (1222) (611)
(21111) (4111) (2222)
(111111) (22111) (5111)
(31111) (11222)
(211111) (41111)
(1111111) (122111)
(221111)
(311111)
(2111111)
(11111111)
For example, the composition (1,2,2,1,1,1) has run-lengths (1,2,3), so is counted under a(8).
Strictly increasing compositions are
A000009.
Partitions with strictly increasing run-lengths are
A100471.
Partitions with strictly decreasing run-lengths are
A100881.
Compositions with equal run-lengths are
A329738.
Compositions whose run-lengths are unimodal are
A332726.
Compositions with strictly increasing or decreasing run-lengths are
A333191.
Numbers with strictly increasing prime multiplicities are
A334965.
Cf.
A072706,
A098859,
A100882,
A100883,
A304686,
A329744,
A329766,
A332726,
A332833,
A332834,
A332835,
A333147,
A333149,
A333190.
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Less@@Length/@Split[#]&]],{n,0,15}]
b[n_, lst_, v_] := b[n, lst, v] = If[n == 0, 1, If[n <= lst, 0, Sum[If[k == v, 0, b[n - k pz, pz, k]], {pz, lst + 1, n}, {k, Floor[n/pz]}]]]; a[n_] := b[n, 0, 0]; a /@ Range[0, 50] (* Giovanni Resta, May 18 2020 *)
A333193
Number of compositions of n whose non-adjacent parts are strictly decreasing.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 15, 21, 29, 40, 53, 71, 93, 122, 158, 204, 260, 332, 419, 528, 661, 825, 1023, 1267, 1560, 1916, 2344, 2860, 3476, 4217, 5097, 6147, 7393, 8872, 10618, 12685, 15115, 17977, 21336, 25276, 29882, 35271, 41551, 48872, 57385, 67277, 78745, 92040
Offset: 0
The a(1) = 1 through a(7) = 15 compositions:
(1) (2) (3) (4) (5) (6) (7)
(11) (12) (13) (14) (15) (16)
(21) (22) (23) (24) (25)
(31) (32) (33) (34)
(211) (41) (42) (43)
(221) (51) (52)
(311) (231) (61)
(312) (241)
(321) (322)
(411) (331)
(2211) (412)
(421)
(511)
(2311)
(3211)
For example, (2,3,1,2) is not such a composition, because the non-adjacent pairs of parts are (2,1), (2,2), (3,2), not all of which are strictly decreasing, while (2,4,1,1) is such a composition, because the non-adjacent pairs of parts are (2,1), (2,1), (4,1), all of which are strictly decreasing.
A version for ordered set partitions is
A332872.
The case of strict compositions is
A333150.
The case of normal sequences appears to be
A001045.
Partitions with strictly increasing run-lengths are
A100471.
Partitions with strictly decreasing run-lengths are
A100881.
Compositions with weakly decreasing non-adjacent parts are
A333148.
Compositions with strictly increasing run-lengths are
A333192.
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,{_,x_,,y_,_}/;y>=x]&]],{n,0,15}]
-
\\ p is all, q is those ending in an unreversed singleton.
seq(n)={my(q=O(x*x^n), p=1+q); for(k=1, n, [p,q] = [p*(1 + x^k + x^(2*k)) + q*x^k, q + p*x^k] ); Vec(p)} \\ Andrew Howroyd, Apr 17 2021
A330759
Number T(n,k) of set partitions into k blocks of strict integer partitions of n; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 2, 1, 0, 2, 1, 0, 3, 2, 0, 4, 5, 1, 0, 5, 6, 1, 0, 6, 9, 2, 0, 8, 13, 3, 0, 10, 23, 10, 1, 0, 12, 27, 11, 1, 0, 15, 40, 19, 2, 0, 18, 51, 26, 3, 0, 22, 71, 40, 5, 0, 27, 100, 73, 16, 1, 0, 32, 127, 93, 19, 1, 0, 38, 163, 132, 31, 2, 0, 46, 215, 184, 45, 3
Offset: 0
T(10,1) = 10: (10), 1234, 127, 136, 145, 19, 235, 28, 37, 46.
T(10,2) = 23: 123|4, 124|3, 12|34, 12|7, 134|2, 13|24, 13|6, 14|23, 14|5, 15|4, 16|3, 17|2, 1|234, 1|27, 1|36, 1|45, 1|9, 23|5, 25|3, 2|35, 2|8, 3|7, 4|6.
T(10,3) = 10: 12|3|4, 13|2|4, 14|2|3, 1|23|4, 1|24|3, 1|2|34, 1|2|7, 1|3|6, 1|4|5, 2|3|5.
T(10,4) = 1: 1|2|3|4.
Triangle T(n,k) begins:
1;
0, 1;
0, 1;
0, 2, 1;
0, 2, 1;
0, 3, 2;
0, 4, 5, 1;
0, 5, 6, 1;
0, 6, 9, 2;
0, 8, 13, 3;
0, 10, 23, 10, 1;
0, 12, 27, 11, 1;
0, 15, 40, 19, 2;
0, 18, 51, 26, 3;
0, 22, 71, 40, 5;
0, 27, 100, 73, 16, 1;
...
-
b:= proc(n, i, k) option remember; `if`(i*(i+1)/2 b(n-i, t, k)*k
+b(n-i, t, k+1))(min(n-i, i-1))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0)):
seq(T(n), n=0..20);
-
b[n_, i_, k_] := b[n, i, k] = If[i(i+1)/2 < n, 0,
If[n == 0, x^k, b[n, i-1, k] + With[{t = Min[n-i, i-1]},
b[n-i, t, k]*k + b[n-i, t, k+1]]]];
T[n_] := CoefficientList[b[n, n, 0], x];
T /@ Range[0, 20] // Flatten (* Jean-François Alcover, Mar 12 2021, after Alois P. Heinz *)
A337459
Numbers k such that the k-th composition in standard order is a unimodal triple.
Original entry on oeis.org
7, 11, 13, 14, 19, 21, 25, 26, 28, 35, 37, 41, 42, 49, 50, 52, 56, 67, 69, 73, 74, 81, 82, 84, 97, 98, 100, 104, 112, 131, 133, 137, 138, 145, 146, 161, 162, 164, 168, 193, 194, 196, 200, 208, 224, 259, 261, 265, 266, 273, 274, 289, 290, 292, 321, 322, 324
Offset: 1
The sequence together with the corresponding triples begins:
7: (1,1,1) 52: (1,2,3) 133: (5,2,1)
11: (2,1,1) 56: (1,1,4) 137: (4,3,1)
13: (1,2,1) 67: (5,1,1) 138: (4,2,2)
14: (1,1,2) 69: (4,2,1) 145: (3,4,1)
19: (3,1,1) 73: (3,3,1) 146: (3,3,2)
21: (2,2,1) 74: (3,2,2) 161: (2,5,1)
25: (1,3,1) 81: (2,4,1) 162: (2,4,2)
26: (1,2,2) 82: (2,3,2) 164: (2,3,3)
28: (1,1,3) 84: (2,2,3) 168: (2,2,4)
35: (4,1,1) 97: (1,5,1) 193: (1,6,1)
37: (3,2,1) 98: (1,4,2) 194: (1,5,2)
41: (2,3,1) 100: (1,3,3) 196: (1,4,3)
42: (2,2,2) 104: (1,2,4) 200: (1,3,4)
49: (1,4,1) 112: (1,1,5) 208: (1,2,5)
50: (1,3,2) 131: (6,1,1) 224: (1,1,6)
A337460 is the non-unimodal version.
A000217(n - 2) counts 3-part compositions.
A001523 counts unimodal compositions.
A011782 counts unimodal permutations.
A115981 counts non-unimodal compositions.
All of the following pertain to compositions in standard order (
A066099):
- Constant compositions are
A272919.
- Combinatory separations are counted by
A334030.
- Non-unimodal compositions are
A335373.
- Non-co-unimodal compositions are
A335374.
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,1000],Length[stc[#]]==3&&!MatchQ[stc[#],{x_,y_,z_}/;x>y
A337460
Numbers k such that the k-th composition in standard order is a non-unimodal triple.
Original entry on oeis.org
22, 38, 44, 70, 76, 88, 134, 140, 148, 152, 176, 262, 268, 276, 280, 296, 304, 352, 518, 524, 532, 536, 552, 560, 592, 608, 704, 1030, 1036, 1044, 1048, 1064, 1072, 1096, 1104, 1120, 1184, 1216, 1408, 2054, 2060, 2068, 2072, 2088, 2096, 2120, 2128, 2144, 2192
Offset: 1
The sequence together with the corresponding triples begins:
22: (2,1,2) 296: (3,2,4) 1048: (6,1,4)
38: (3,1,2) 304: (3,1,5) 1064: (5,2,4)
44: (2,1,3) 352: (2,1,6) 1072: (5,1,5)
70: (4,1,2) 518: (7,1,2) 1096: (4,3,4)
76: (3,1,3) 524: (6,1,3) 1104: (4,2,5)
88: (2,1,4) 532: (5,2,3) 1120: (4,1,6)
134: (5,1,2) 536: (5,1,4) 1184: (3,2,6)
140: (4,1,3) 552: (4,2,4) 1216: (3,1,7)
148: (3,2,3) 560: (4,1,5) 1408: (2,1,8)
152: (3,1,4) 592: (3,2,5) 2054: (9,1,2)
176: (2,1,5) 608: (3,1,6) 2060: (8,1,3)
262: (6,1,2) 704: (2,1,7) 2068: (7,2,3)
268: (5,1,3) 1030: (8,1,2) 2072: (7,1,4)
276: (4,2,3) 1036: (7,1,3) 2088: (6,2,4)
280: (4,1,4) 1044: (6,2,3) 2096: (6,1,5)
A000217(n - 2) counts 3-part compositions.
A001399(n - 3) counts 3-part partitions.
A001399(n - 6) counts 3-part strict partitions.
A001399(n - 6)*2 counts non-unimodal 3-part strict compositions.
A001399(n - 6)*4 counts unimodal 3-part strict compositions.
A001399(n - 6)*6 counts 3-part strict compositions.
A001523 counts unimodal compositions.
A001840 counts non-unimodal triples.
A059204 counts non-unimodal permutations.
A115981 counts non-unimodal compositions.
A328509 counts non-unimodal patterns.
All of the following pertain to compositions in standard order (
A066099):
- Constant compositions are
A272919.
- Non-unimodal compositions are
A335373.
- Non-co-unimodal compositions are
A335374.
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,1000],Length[stc[#]]==3&&MatchQ[stc[#],{x_,y_,z_}/;x>y
Comments