cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A355384 Number of pairs (y, v) where y is a composition of n and v is a (not necessarily contiguous) subsequence of y whose length equals the number of distinct parts in y.

Original entry on oeis.org

1, 1, 2, 4, 12, 30, 66, 164, 419, 1049, 2625, 6372, 15451, 37335, 89855, 216523, 518714, 1235897, 2930050, 6911149, 16217817, 37914515, 88304358, 204971388, 474172899, 1093547574, 2513959446, 5761735383, 13165908506, 29998936859, 68164839887, 154478212575
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2022

Keywords

Comments

If a composition is regarded as an arrow from the number of parts to the number of distinct parts, this sequence counts composable containments of compositions.

Examples

			The initial terms count the following containments:
  ()()  (1)(1)  (2)(2)   (3)(3)    (4)(4)
                (11)(1)  (21)(21)  (31)(31)
                         (12)(12)  (13)(13)
                         (111)(1)  (22)(2)
                                   (211)(11)
                                   (211)(21)
                                   (121)(11)
                                   (121)(12)
                                   (121)(21)
                                   (112)(11)
                                   (112)(12)
                                   (1111)(1)
		

Crossrefs

The homog. case is A032020, w/o containment A355388 (partitions A355385).
For partitions we have A355383, homog. A000009, w/ multiplicity A339006.
A000244 counts splittings of compositions, for partitions A323583.

Programs

  • Mathematica
    Table[Sum[Length[Union[Subsets[y,{Length[Union[y]]}]]],{y,Join@@Permutations/@IntegerPartitions[n]}],{n,0,5}]

Extensions

a(21) and beyond from Christian Sievers, May 08 2025

A355385 Number of pairs (y, v) of integer partitions of n where the length of v equals the number of distinct parts in y.

Original entry on oeis.org

1, 1, 2, 3, 7, 12, 25, 43, 81, 141, 243, 409, 699, 1132, 1844, 2995, 4744, 7408, 11655, 17839, 27509, 41546, 62879, 93537, 139974, 205547, 302714, 440097, 640968, 921774, 1327538, 1891548, 2696635, 3809860, 5380257, 7540778, 10561566, 14687109, 20408170, 28183998, 38882009
Offset: 0

Views

Author

Gus Wiseman, Jul 02 2022

Keywords

Comments

Also the number of composable pairs of integer partitions of n, where a partition is regarded as an arrow from (number of parts) to (number of distinct parts). Is there a nice choice of a composition operation making this into an associative category?

Examples

			The a(0) = 1 through a(5) = 10 pairs:
  ()()  (1)(1)  (2)(2)   (3)(3)    (4)(4)     (5)(5)
                (11)(2)  (21)(21)  (31)(31)   (41)(41)
                         (111)(3)  (31)(22)   (41)(32)
                                   (22)(4)    (32)(41)
                                   (211)(31)  (32)(32)
                                   (211)(22)  (311)(41)
                                   (1111)(4)  (311)(32)
                                              (221)(41)
                                              (221)(32)
                                              (2111)(41)
                                              (2111)(32)
                                              (11111)(5)
		

Crossrefs

The inhomogeneous version with containment and multiplicity is A339006.
The inhomogeneous version with containment is A355383.
The inhomogeneous version with containment for compositions is A355384.
The version for compositions is A355388.
A001970 counts multiset partitions of partitions.
A063834 counts partitions of each part of a partition.
A323583 counts splittings of partitions.

Programs

  • Mathematica
    Table[Length[Select[Tuples[IntegerPartitions[n],2],Length[Union[#[[1]]]]==Length[#[[2]]]&]],{n,0,15}]
  • PARI
    \\ P gives A008284 and R gives A116608 as g.f.'s.
    P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
    R(n,y) = {prod(k=1, n, 1 + y/(1 - x^k) - y + O(x*x^n))}
    seq(n) = {my(g=Vec(P(n,y)), h=Vec(R(n,y))); vector(n+1, i, my(p=g[i], q=h[i]); sum(j=0, poldegree(q), polcoef(p,j)*polcoef(q,j)))} \\ Andrew Howroyd, Dec 31 2022

Formula

a(n) = Sum_{j >= 1} A116608(n,j) * A008284(n,j) for n > 0. - Andrew Howroyd, Dec 31 2022

Extensions

Terms a(26) and beyond from Andrew Howroyd, Dec 31 2022

A355388 Number of composable pairs (y, v) of integer compositions of n, where a composition is regarded as an arrow from the number of parts to the number of distinct parts.

Original entry on oeis.org

1, 1, 2, 6, 18, 58, 174, 536, 1656, 4947, 14800, 43157, 126572, 364070, 1039926, 2938898, 8223400, 22846370, 62930113, 172177400, 467002792, 1259736804, 3371190792, 8973530491, 23728305128, 62421018163, 163255839779, 424842462529, 1100006243934, 2834558927244, 7270915592897
Offset: 0

Views

Author

Gus Wiseman, Jul 02 2022

Keywords

Comments

Being composable here means that the length of v equals the number of distinct parts in y.

Examples

			The a(0) = 1 through a(4) = 18 pairs:
  ()()  (1)(1)  (2)(2)   (3)(3)    (4)(4)
                (11)(2)  (21)(21)  (31)(31)
                         (21)(12)  (31)(13)
                         (12)(21)  (31)(22)
                         (12)(12)  (13)(31)
                         (111)(3)  (13)(13)
                                   (13)(22)
                                   (22)(4)
                                   (211)(31)
                                   (211)(13)
                                   (211)(22)
                                   (121)(31)
                                   (121)(13)
                                   (121)(22)
                                   (112)(31)
                                   (112)(13)
                                   (112)(22)
                                   (1111)(4)
		

Crossrefs

The case with containment is A032020.
The inhomogeneous version with containment is A355384, partitions A355383.
The version for partitions is A355385, with containment A000009.
A133494 counts compositions of each part of a composition, strict A336139.
A323583 counts splittings of partitions.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,
          expand(add(b(n-i*j, i-1, p+j)/j!*`if`(j=0, 1, x), j=0..n/i))))
        end:
    a:= n-> (p-> add(coeff(p, x, i)*binomial(n-1, i-1), i=0..degree(p)))(b(n$2, 0)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 01 2023
  • Mathematica
    Table[Length[Select[Tuples[Join@@Permutations/@IntegerPartitions[n],2], Length[Union[#[[1]]]]==Length[#[[2]]]&]],{n,0,10}]
  • PARI
    a(n) = {if(n==0, 1, my(s=0); forpart(p=n, p=Vec(p); my(S=Set(p)); s += binomial(n-1, #S-1)*(#p)!/prod(i=1, #S, my(c=#select(t->t==S[i], p)); c! )); s)} \\ Andrew Howroyd, Jan 01 2023
    
  • PARI
    \\ for larger n.
    a(n) = { local(Cache=Map());
      my(F(r,m,p,q) = my(key=[r,m,p,q], z); if(!mapisdefined(Cache, key, &z),
      z = if(m==0, if(r==0, p!*binomial(n-1, q-1)), self()(r, m-1, p, q) + sum(j=1, r\m, self()(r-j*m, min(m-1, r-j*m), p+j, q+1)/j!));
      mapput(Cache, key, z) ); z);
      if(n==0, 1, F(n, n, 0, 0))
    } \\ Andrew Howroyd, Jan 01 2023

Formula

a(n) = Sum_{k>=1} binomial(n-1, k-1)*A235998(n, k) for n > 0. - Andrew Howroyd, Jan 01 2023

Extensions

Terms a(14) and beyond from Andrew Howroyd, Jan 01 2023

A355382 Number of divisors d of n such that bigomega(d) = omega(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 02 2022

Keywords

Comments

The statistic omega = A001221 counts distinct prime factors (without multiplicity).
The statistic bigomega = A001222 counts prime factors with multiplicity.
If positive integers are regarded as arrows from the number of prime factors to the number of distinct prime factors, this sequence counts divisible composable pairs. Is there a nice choice of a composition operation making this into an associative category?

Examples

			The set of divisors of 180 satisfying the condition is {12, 18, 20, 30, 45}, so a(180) = 5.
		

Crossrefs

The version with multiplicity is A181591.
For partitions we have A355383, with multiplicity A339006.
The version for compositions is A355384.
Positions of first appearances are A355386.
A000005 counts divisors.
A001221 counts prime indices without multiplicity.
A001222 count prime indices with multiplicity.
A070175 gives representatives for bigomega and omega, triangle A303555.

Programs

  • Mathematica
    Table[Length[Select[Divisors[n],PrimeOmega[#]==PrimeNu[n]&]],{n,100}]

A355386 Position of first appearance of n in A355382, where A355382(m) = number of divisors d of m such that bigomega(d) = omega(m); or a(n) = -1 if n does not appear in A355382.

Original entry on oeis.org

1, 12, 36, 120, 180, 360, 840, 1260, 5400, 27000, 2520, 5040, 6300, 7560, 15120, 12600, 25200
Offset: 1

Views

Author

Gus Wiseman, Jul 02 2022

Keywords

Comments

The first position of -1 appears to be 18, pointed out by Amiram Eldar.
The terms are not always increasing.
The statistic omega = A001221 counts distinct prime factors (without multiplicity).
The statistic bigomega = A001222 counts prime factors with multiplicity.

Examples

			The terms together with their prime indices begin:
      1: {}
     12: {1,1,2}
     36: {1,1,2,2}
    120: {1,1,1,2,3}
    180: {1,1,2,2,3}
    360: {1,1,1,2,2,3}
    840: {1,1,1,2,3,4}
   1260: {1,1,2,2,3,4}
   5400: {1,1,1,2,2,2,3,3}
  27000: {1,1,1,2,2,2,3,3,3}
   2520: {1,1,1,2,2,3,4}
   5040: {1,1,1,1,2,2,3,4}
   6300: {1,1,2,2,3,3,4}
   7560: {1,1,1,2,2,2,3,4}
  15120: {1,1,1,1,2,2,2,3,4}
The terms together with their divisors satisfying the condition begin:
      1:   1
     12:   4,   6
     36:   4,   6,   9
    120:   8,  12,  20,  30
    180:  12,  18,  20,  30,  45
    360:   8,  12,  18,  20,  30,  45
    840:  24,  40,  56,  60,  84, 140, 210
   1260:  36,  60,  84,  90, 126, 140, 210, 315
   5400:   8,  12,  18,  20,  27,  30,  45,  50,  75
  27000:   8,  12,  18,  20,  27,  30,  45,  50,  75, 125
   2520:  24,  36,  40,  56,  60,  84,  90, 126, 140, 210, 315
   5040:  16,  24,  36,  40,  56,  60,  84,  90, 126, 140, 210, 315
   6300:  36,  60,  84,  90, 100, 126, 140, 150, 210, 225, 315, 350, 525
		

Crossrefs

These are the positions of first appearances in A355382, which is the version of A181591 without multiplicity.
A000005 counts divisors.
A001221 counts prime indices without multiplicity.
A001222 counts prime indices with multiplicity.
A070175 gives representatives for bigomega and omega, triangle A303555.
A355383 counts cmpsbl. pairs of partitions with containment, comps. A355384.

Programs

  • Mathematica
    tf=Table[Length[Select[Divisors[n],PrimeOmega[#]==PrimeNu[n]&]],{n,1000}];
    Table[Position[tf,n][[1,1]],{n,Select[Union[tf],SubsetQ[tf,Range[#]]&]}]

A355387 Number of ways to choose a distinct subsequence of an integer composition of n.

Original entry on oeis.org

1, 2, 5, 14, 37, 98, 259, 682, 1791, 4697, 12303, 32196, 84199, 220087, 575067, 1502176, 3923117, 10244069, 26746171, 69825070, 182276806, 475804961, 1241965456, 3241732629, 8461261457, 22084402087, 57640875725, 150442742575, 392652788250, 1024810764496
Offset: 0

Views

Author

Gus Wiseman, Jul 04 2022

Keywords

Comments

By "distinct" we mean equal subsequences are counted only once. For example, the pair (1,1)(1) is counted only once even though (1) is a subsequence of (1,1) in two ways. The version with multiplicity is A025192.

Examples

			The a(3) = 14 pairings of a composition with a chosen subsequence:
  (3)()     (3)(3)
  (21)()    (21)(1)   (21)(2)    (21)(21)
  (12)()    (12)(1)   (12)(2)    (12)(12)
  (111)()   (111)(1)  (111)(11)  (111)(111)
		

Crossrefs

For partitions we have A000712, composable A339006.
The homogeneous version is A011782, without containment A000302.
With multiplicity we have A025192, for partitions A070933.
The strict case is A032005.
The case of strict subsequences is A236002.
The composable case is A355384, homogeneous without containment A355388.
A075900 counts compositions of each part of a partition.
A304961 counts compositions of each part of a strict partition.
A307068 counts strict compositions of each part of a composition.
A336127 counts compositions of each part of a strict composition.

Programs

  • Mathematica
    Table[Sum[Length[Union[Subsets[y]]],{y,Join@@Permutations/@IntegerPartitions[n]}],{n,0,6}]
  • PARI
    lista(n)=my(f=sum(k=1,n,(x^k+x*O(x^n))/(1-x/(1-x)+x^k)));Vec((1-x)/((1-2*x)*(1-f))) \\ Christian Sievers, May 06 2025

Formula

G.f.: (1-x)/((1-2*x)*(1-f)) where f = Sum_{k>=1} x^k/(1-x/(1-x)+x^k) is the generating function for A331330. - Christian Sievers, May 06 2025

Extensions

a(16) and beyond from Christian Sievers, May 06 2025

A355391 Position of first appearance of n in A181591 = binomial(bigomega(n), omega(n)).

Original entry on oeis.org

1, 4, 8, 16, 32, 24, 128, 256, 512, 48, 2048, 4096, 8192, 16384, 96, 65536, 131072, 262144, 524288, 240, 192, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 384, 536870912, 1073741824, 2147483648, 4294967296, 8589934592, 17179869184, 480, 768, 137438953472
Offset: 1

Views

Author

Gus Wiseman, Jul 04 2022

Keywords

Comments

The statistic omega = A001221 counts distinct prime factors (without multiplicity).
The statistic bigomega = A001222 counts prime factors with multiplicity.
We have A181591(2^k) = k, so the sequence is fully defined. Positions meeting this maximum are A185024, complement A006987.

Examples

			The terms together with their prime indices begin:
       1: {}
       4: {1,1}
       8: {1,1,1}
      16: {1,1,1,1}
      32: {1,1,1,1,1}
      24: {1,1,1,2}
     128: {1,1,1,1,1,1,1}
     256: {1,1,1,1,1,1,1,1}
     512: {1,1,1,1,1,1,1,1,1}
      48: {1,1,1,1,2}
    2048: {1,1,1,1,1,1,1,1,1,1,1}
    4096: {1,1,1,1,1,1,1,1,1,1,1,1}
    8192: {1,1,1,1,1,1,1,1,1,1,1,1,1}
   16384: {1,1,1,1,1,1,1,1,1,1,1,1,1,1}
      96: {1,1,1,1,1,2}
   65536: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
  131072: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
  262144: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
  524288: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
     240: {1,1,1,1,2,3}
     192: {1,1,1,1,1,1,2}
		

Crossrefs

Positions of powers of 2 are A185024, complement A006987.
Counting multiplicity gives A355386.
The sorted version is A355392.
A000005 counts divisors.
A001221 counts prime factors without multiplicity.
A001222 count prime factors with multiplicity.
A070175 gives representatives for bigomega and omega, triangle A303555.

Programs

  • Mathematica
    s=Table[Binomial[PrimeOmega[n],PrimeNu[n]],{n,1000}];
    Table[Position[s,k][[1,1]],{k,Select[Union[s],SubsetQ[s,Range[#]]&]}]
  • PARI
    f(n) = binomial(bigomega(n), omega(n)); \\ A181591
    a(n) = my(k=1); while (f(k) != n, k++); k; \\ Michel Marcus, Jul 10 2022

Formula

binomial(bigomega(a(n)), omega(a(n))) = n.

Extensions

a(22)-a(28) from Michel Marcus, Jul 10 2022
a(29)-a(37) from Amiram Eldar, Jul 10 2022
Showing 1-7 of 7 results.