cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A355386 Position of first appearance of n in A355382, where A355382(m) = number of divisors d of m such that bigomega(d) = omega(m); or a(n) = -1 if n does not appear in A355382.

Original entry on oeis.org

1, 12, 36, 120, 180, 360, 840, 1260, 5400, 27000, 2520, 5040, 6300, 7560, 15120, 12600, 25200
Offset: 1

Views

Author

Gus Wiseman, Jul 02 2022

Keywords

Comments

The first position of -1 appears to be 18, pointed out by Amiram Eldar.
The terms are not always increasing.
The statistic omega = A001221 counts distinct prime factors (without multiplicity).
The statistic bigomega = A001222 counts prime factors with multiplicity.

Examples

			The terms together with their prime indices begin:
      1: {}
     12: {1,1,2}
     36: {1,1,2,2}
    120: {1,1,1,2,3}
    180: {1,1,2,2,3}
    360: {1,1,1,2,2,3}
    840: {1,1,1,2,3,4}
   1260: {1,1,2,2,3,4}
   5400: {1,1,1,2,2,2,3,3}
  27000: {1,1,1,2,2,2,3,3,3}
   2520: {1,1,1,2,2,3,4}
   5040: {1,1,1,1,2,2,3,4}
   6300: {1,1,2,2,3,3,4}
   7560: {1,1,1,2,2,2,3,4}
  15120: {1,1,1,1,2,2,2,3,4}
The terms together with their divisors satisfying the condition begin:
      1:   1
     12:   4,   6
     36:   4,   6,   9
    120:   8,  12,  20,  30
    180:  12,  18,  20,  30,  45
    360:   8,  12,  18,  20,  30,  45
    840:  24,  40,  56,  60,  84, 140, 210
   1260:  36,  60,  84,  90, 126, 140, 210, 315
   5400:   8,  12,  18,  20,  27,  30,  45,  50,  75
  27000:   8,  12,  18,  20,  27,  30,  45,  50,  75, 125
   2520:  24,  36,  40,  56,  60,  84,  90, 126, 140, 210, 315
   5040:  16,  24,  36,  40,  56,  60,  84,  90, 126, 140, 210, 315
   6300:  36,  60,  84,  90, 100, 126, 140, 150, 210, 225, 315, 350, 525
		

Crossrefs

These are the positions of first appearances in A355382, which is the version of A181591 without multiplicity.
A000005 counts divisors.
A001221 counts prime indices without multiplicity.
A001222 counts prime indices with multiplicity.
A070175 gives representatives for bigomega and omega, triangle A303555.
A355383 counts cmpsbl. pairs of partitions with containment, comps. A355384.

Programs

  • Mathematica
    tf=Table[Length[Select[Divisors[n],PrimeOmega[#]==PrimeNu[n]&]],{n,1000}];
    Table[Position[tf,n][[1,1]],{n,Select[Union[tf],SubsetQ[tf,Range[#]]&]}]

A133494 Diagonal of the array of iterated differences of A047848.

Original entry on oeis.org

1, 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 177147, 531441, 1594323, 4782969, 14348907, 43046721, 129140163, 387420489, 1162261467, 3486784401, 10460353203, 31381059609, 94143178827, 282429536481, 847288609443, 2541865828329, 7625597484987, 22876792454961, 68630377364883
Offset: 0

Views

Author

Paul Barry, Paul Curtz, Dec 23 2007

Keywords

Comments

a(n) is the number of ways to choose a composition C, and then choose a composition of each part of C. - Geoffrey Critzer, Mar 19 2012
a(n) is the top left entry of the n-th power of the 3 X 3 matrix [1, 1, 1; 1, 1, 1; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
a(n) is the reptend length of 1/3^(n+1) in decimal. - Jianing Song, Nov 14 2018
Also the number of pairs of integer compositions, the first summing to n and the second with sum equal to the length of the first. If an integer composition is regarded as an arrow from sum to length, these are composable pairs, and the obvious composition operation founds a category of integer compositions. For example, we have (2,1,1,4) . (1,2,1) . (1,2) = (2,6), where dots represent the composition operation. The version without empty compositions is A000244. Composable triples are counted by 1 followed by A000302. The unordered version is A022811. - Gus Wiseman, Jul 14 2022

Examples

			From _Gus Wiseman_, Jul 15 2020: (Start)
The a(0) = 1 through a(3) = 9 ways to choose a composition of each part of a composition:
  ()  (1)  (2)      (3)
           (1,1)    (1,2)
           (1),(1)  (2,1)
                    (1,1,1)
                    (1),(2)
                    (2),(1)
                    (1),(1,1)
                    (1,1),(1)
                    (1),(1),(1)
(End)
		

Crossrefs

The strict version is A336139.
Splittings of partitions are A323583.
Multiset partitions of partitions are A001970.
Partitions of each part of a partition are A063834.
Compositions of each part of a partition are A075900.
Strict partitions of each part of a strict partition are A279785.
Compositions of each part of a strict partition are A304961.
Strict compositions of each part of a composition are A307068.
Compositions of each part of a strict composition are A336127.

Programs

Formula

Binomial transform of A078008. - Paul Curtz, Aug 04 2008
From R. J. Mathar, Nov 11 2008: (Start)
G.f.: (1 - 2*x)/(1 - 3*x).
a(n) = A000244(n-1), n > 0. (End)
From Philippe Deléham, Nov 13 2008: (Start)
a(n) = Sum_{k=0..n} A112467(n,k)*2^k.
a(n) = Sum_{k=0..n} A071919(n,k)*2^k. (End)
Let A(x) be the g.f. Then B(x) = x*A(x) satisfies B(x/(1-x)) = x/(1 - 2*B(x)). - Vladimir Kruchinin, Dec 05 2011
G.f.: 1/(1 - (Sum_{k>=1} (x/(1 - x))^k)). - Joerg Arndt, Sep 30 2012
For n > 0, a(n) = 2*(Sum_{k=0..n-1} a(k)) - 1 = 3^(n-1). - J. Conrad, Oct 29 2015
G.f.: 1 + x/(1 + x)*(1 + 4*x/(1 + 4*x)*(1 + 7*x/(1 + 7*x)*(1 + 10*x/(1 + 10*x)*(1 + .... - Peter Bala, May 27 2017
Invert transform of A011782(n) = 2^(n-1). Second invert transform of A000012. - Gus Wiseman, Jul 19 2020
a(n) = ceiling(3^(n-1)). - Alois P. Heinz, Jul 26 2020
From Elmo R. Oliveira, Mar 31 2025: (Start)
E.g.f.: (2 + exp(3*x))/3.
a(n) = 3*a(n-1) for n > 1. (End)

Extensions

Definition clarified by R. J. Mathar, Nov 11 2008

A355383 Number of pairs (y, v), where y is a partition of n and v is a sub-multiset of y whose cardinality equals the number of distinct parts in y.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 16, 26, 42, 64, 100, 150, 224, 330, 482, 697, 999, 1418, 1996, 2794, 3879, 5355, 7343, 10018, 13583, 18338, 24618, 32917, 43790, 58043, 76591, 100716, 131906, 172194, 223966, 290423, 375318, 483668, 621368, 796138, 1017146
Offset: 0

Views

Author

Gus Wiseman, Jul 02 2022

Keywords

Comments

If a partition is regarded as an arrow from the number of parts to the number of distinct parts, this sequence counts composable containments of partitions.

Examples

			The a(0) = 1 through a(5) = 10 pairs:
  ()()  (1)(1)  (2)(2)   (3)(3)    (4)(4)     (5)(5)
                (11)(1)  (21)(21)  (31)(31)   (41)(41)
                         (111)(1)  (22)(2)    (32)(32)
                                   (211)(11)  (311)(11)
                                   (211)(21)  (311)(31)
                                   (1111)(1)  (221)(21)
                                              (221)(22)
                                              (2111)(11)
                                              (2111)(21)
                                              (11111)(1)
		

Crossrefs

With multiplicity we have A339006.
The version for compositions is A355384.
The homogeneous version w/o containment is A355385, compositions A355388.
A001970 counts multiset partitions of partitions.
A063834 counts partitions of each part of a partition.

Programs

  • Mathematica
    Table[Sum[Length[Union[Subsets[y,{Length[Union[y]]}]]],{y,IntegerPartitions[n]}],{n,0,15}]

A355388 Number of composable pairs (y, v) of integer compositions of n, where a composition is regarded as an arrow from the number of parts to the number of distinct parts.

Original entry on oeis.org

1, 1, 2, 6, 18, 58, 174, 536, 1656, 4947, 14800, 43157, 126572, 364070, 1039926, 2938898, 8223400, 22846370, 62930113, 172177400, 467002792, 1259736804, 3371190792, 8973530491, 23728305128, 62421018163, 163255839779, 424842462529, 1100006243934, 2834558927244, 7270915592897
Offset: 0

Views

Author

Gus Wiseman, Jul 02 2022

Keywords

Comments

Being composable here means that the length of v equals the number of distinct parts in y.

Examples

			The a(0) = 1 through a(4) = 18 pairs:
  ()()  (1)(1)  (2)(2)   (3)(3)    (4)(4)
                (11)(2)  (21)(21)  (31)(31)
                         (21)(12)  (31)(13)
                         (12)(21)  (31)(22)
                         (12)(12)  (13)(31)
                         (111)(3)  (13)(13)
                                   (13)(22)
                                   (22)(4)
                                   (211)(31)
                                   (211)(13)
                                   (211)(22)
                                   (121)(31)
                                   (121)(13)
                                   (121)(22)
                                   (112)(31)
                                   (112)(13)
                                   (112)(22)
                                   (1111)(4)
		

Crossrefs

The case with containment is A032020.
The inhomogeneous version with containment is A355384, partitions A355383.
The version for partitions is A355385, with containment A000009.
A133494 counts compositions of each part of a composition, strict A336139.
A323583 counts splittings of partitions.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,
          expand(add(b(n-i*j, i-1, p+j)/j!*`if`(j=0, 1, x), j=0..n/i))))
        end:
    a:= n-> (p-> add(coeff(p, x, i)*binomial(n-1, i-1), i=0..degree(p)))(b(n$2, 0)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 01 2023
  • Mathematica
    Table[Length[Select[Tuples[Join@@Permutations/@IntegerPartitions[n],2], Length[Union[#[[1]]]]==Length[#[[2]]]&]],{n,0,10}]
  • PARI
    a(n) = {if(n==0, 1, my(s=0); forpart(p=n, p=Vec(p); my(S=Set(p)); s += binomial(n-1, #S-1)*(#p)!/prod(i=1, #S, my(c=#select(t->t==S[i], p)); c! )); s)} \\ Andrew Howroyd, Jan 01 2023
    
  • PARI
    \\ for larger n.
    a(n) = { local(Cache=Map());
      my(F(r,m,p,q) = my(key=[r,m,p,q], z); if(!mapisdefined(Cache, key, &z),
      z = if(m==0, if(r==0, p!*binomial(n-1, q-1)), self()(r, m-1, p, q) + sum(j=1, r\m, self()(r-j*m, min(m-1, r-j*m), p+j, q+1)/j!));
      mapput(Cache, key, z) ); z);
      if(n==0, 1, F(n, n, 0, 0))
    } \\ Andrew Howroyd, Jan 01 2023

Formula

a(n) = Sum_{k>=1} binomial(n-1, k-1)*A235998(n, k) for n > 0. - Andrew Howroyd, Jan 01 2023

Extensions

Terms a(14) and beyond from Andrew Howroyd, Jan 01 2023

A355387 Number of ways to choose a distinct subsequence of an integer composition of n.

Original entry on oeis.org

1, 2, 5, 14, 37, 98, 259, 682, 1791, 4697, 12303, 32196, 84199, 220087, 575067, 1502176, 3923117, 10244069, 26746171, 69825070, 182276806, 475804961, 1241965456, 3241732629, 8461261457, 22084402087, 57640875725, 150442742575, 392652788250, 1024810764496
Offset: 0

Views

Author

Gus Wiseman, Jul 04 2022

Keywords

Comments

By "distinct" we mean equal subsequences are counted only once. For example, the pair (1,1)(1) is counted only once even though (1) is a subsequence of (1,1) in two ways. The version with multiplicity is A025192.

Examples

			The a(3) = 14 pairings of a composition with a chosen subsequence:
  (3)()     (3)(3)
  (21)()    (21)(1)   (21)(2)    (21)(21)
  (12)()    (12)(1)   (12)(2)    (12)(12)
  (111)()   (111)(1)  (111)(11)  (111)(111)
		

Crossrefs

For partitions we have A000712, composable A339006.
The homogeneous version is A011782, without containment A000302.
With multiplicity we have A025192, for partitions A070933.
The strict case is A032005.
The case of strict subsequences is A236002.
The composable case is A355384, homogeneous without containment A355388.
A075900 counts compositions of each part of a partition.
A304961 counts compositions of each part of a strict partition.
A307068 counts strict compositions of each part of a composition.
A336127 counts compositions of each part of a strict composition.

Programs

  • Mathematica
    Table[Sum[Length[Union[Subsets[y]]],{y,Join@@Permutations/@IntegerPartitions[n]}],{n,0,6}]
  • PARI
    lista(n)=my(f=sum(k=1,n,(x^k+x*O(x^n))/(1-x/(1-x)+x^k)));Vec((1-x)/((1-2*x)*(1-f))) \\ Christian Sievers, May 06 2025

Formula

G.f.: (1-x)/((1-2*x)*(1-f)) where f = Sum_{k>=1} x^k/(1-x/(1-x)+x^k) is the generating function for A331330. - Christian Sievers, May 06 2025

Extensions

a(16) and beyond from Christian Sievers, May 06 2025
Showing 1-5 of 5 results.