cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A258774 a(n) = 1 + sigma(n) + sigma(n)^2.

Original entry on oeis.org

3, 13, 21, 57, 43, 157, 73, 241, 183, 343, 157, 813, 211, 601, 601, 993, 343, 1561, 421, 1807, 1057, 1333, 601, 3661, 993, 1807, 1641, 3193, 931, 5257, 1057, 4033, 2353, 2971, 2353, 8373, 1483, 3661, 3193, 8191, 1807, 9313, 1981, 7141, 6163, 5257, 2353
Offset: 1

Views

Author

Robert Price, Jun 09 2015

Keywords

Crossrefs

Cf. A000203 (sum of divisors of n).
Cf. A258775 (indices of primes in this sequence), A258776 (corresponding primes).

Programs

  • Magma
    [1+SumOfDivisors(n)+ SumOfDivisors(n)^2: n in [1..50]]; // Vincenzo Librandi, Jun 10 2015
    
  • Maple
    with(numtheory): A258774:=n->1+sigma(n)+sigma(n)^2: seq(A258774(n), n=1..100); # Wesley Ivan Hurt, Jul 09 2015
  • Mathematica
    Table[1 + DivisorSigma[1, n] + DivisorSigma[1, n]^2, {n, 10000}]
    Table[Cyclotomic[3, DivisorSigma[1, n]], {n, 10000}]
  • PARI
    a(n)=my(s=sigma(n)); s^2+s+1 \\ Charles R Greathouse IV, Jun 10 2015
    
  • Python
    from sympy import divisor_sigma
    def A258774(n):
        return (lambda x: x*(x+1)+1)(divisor_sigma(n)) # Chai Wah Wu, Jun 10 2015

Formula

a(n) = 1 + A000203(n) + A000203(n)^2.
a(n) = 1 + A000203(n) + A072861(n). - Omar E. Pol, Jun 19 2015

A258974 a(n) = 1 + sigma(n)^2.

Original entry on oeis.org

2, 10, 17, 50, 37, 145, 65, 226, 170, 325, 145, 785, 197, 577, 577, 962, 325, 1522, 401, 1765, 1025, 1297, 577, 3601, 962, 1765, 1601, 3137, 901, 5185, 1025, 3970, 2305, 2917, 2305, 8282, 1445, 3601, 3137, 8101, 1765, 9217, 1937, 7057, 6085, 5185, 2305
Offset: 1

Views

Author

Robert Price, Jun 15 2015

Keywords

Crossrefs

Cf. A000203 (sum of divisors of n).
Cf. A258976 (indices of primes in this sequence), A258977 (corresponding primes).

Programs

  • Magma
    [(1 + DivisorSigma(1, n)^2): n in [1..50]]; // Vincenzo Librandi, Jun 16 2015
    
  • Maple
    with(numtheory): A258974:=n->1+sigma(n)^2: seq(A258974(n), n=1..100); # Wesley Ivan Hurt, Jul 09 2015
  • Mathematica
    Table[1 + DivisorSigma[1, n]^2, {n, 10000}]
    Table[Cyclotomic[4, DivisorSigma[1, n]], {n, 10000}]
  • PARI
    a(n)=sigma(n)^2+1 \\ Charles R Greathouse IV, Jun 18 2015

Formula

a(n) = 1 + A000203(n)^2.
a(n) = 1 + A072861(n). - Omar E. Pol, Jun 19 2015
a(n) = A002522(A000203(n)). - Michel Marcus, Jun 25 2015

A259184 a(n) = 1 - sigma(n) + sigma(n)^2.

Original entry on oeis.org

1, 7, 13, 43, 31, 133, 57, 211, 157, 307, 133, 757, 183, 553, 553, 931, 307, 1483, 381, 1723, 993, 1261, 553, 3541, 931, 1723, 1561, 3081, 871, 5113, 993, 3907, 2257, 2863, 2257, 8191, 1407, 3541, 3081, 8011, 1723, 9121, 1893, 6973, 6007, 5113, 2257, 15253
Offset: 1

Views

Author

Robert Price, Jun 20 2015

Keywords

Crossrefs

Cf. A000203 (sum of divisors of n).
Cf. A259185 (indices of primes in this sequence), A259186 (corresponding primes).

Programs

  • Maple
    with(numtheory): A259184:=n->1-sigma(n)+sigma(n)^2: seq(A259184(n), n=1..100); # Wesley Ivan Hurt, Jul 09 2015
  • Mathematica
    Table[1 - DivisorSigma[1, n] + DivisorSigma[1, n]^2, {n, 10000}]
    Table[Cyclotomic[6, DivisorSigma[1, n]], {n, 10000}]
  • PARI
    a(n) = polcyclo(6, sigma(n)); \\ Michel Marcus, Jun 25 2015

Formula

a(n) = 1 - A000203(n) + A000203(n)^2.
a(n) = 1 - A000203(n) + A072861(n). - Omar E. Pol, Jun 20 2015
a(n) = A002061(A000203(n)). - Michel Marcus, Jun 25 2015

A272024 Number of partitions of the sum of the divisors of n.

Original entry on oeis.org

1, 3, 5, 15, 11, 77, 22, 176, 101, 385, 77, 3718, 135, 1575, 1575, 6842, 385, 31185, 627, 53174, 8349, 17977, 1575, 966467, 6842, 53174, 37338, 526823, 5604, 5392783, 8349, 1505499, 147273, 386155, 147273, 64112359, 26015, 966467, 526823, 56634173, 53174, 118114304, 75175, 26543660, 12132164, 5392783
Offset: 1

Views

Author

Omar E. Pol, Apr 19 2016

Keywords

Comments

Also number of partitions of the total number of parts in the partitions of n into equal parts.
Note that one of the partitions of the sum of the divisors of n is also the list of divisors of n in decreasing order, see example.

Examples

			For n = 9 the sum of the divisors of 9 is 1 + 3 + 9 = 13 and the number of partitions of 13 is A000041(13) = 101, so a(9) = 101.
Note that one of the 101 partitions of 13 is [9, 3, 1] and it is also the list of divisors of 9 in decreasing order.
		

Crossrefs

Programs

  • Mathematica
    Table[PartitionsP@ DivisorSigma[1, n], {n, 46}] (* Michael De Vlieger, Apr 19 2016 *)
  • PARI
    a(n) = numbpart(sigma(n)); \\ Michel Marcus, Apr 19 2016

Formula

a(n) = p(sigma(n)) = A000041(A000203(n)).

A356535 a(n) = Sum_{k=1..n} sigma_2(k)^2.

Original entry on oeis.org

1, 26, 126, 567, 1243, 3743, 6243, 13468, 21749, 38649, 53533, 97633, 126533, 189033, 256633, 372914, 457014, 664039, 795083, 1093199, 1343199, 1715299, 1996199, 2718699, 3142500, 3865000, 4537400, 5639900, 6348864, 8038864, 8964308, 10827533, 12315933, 14418433
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 11 2022

Keywords

Comments

Partial sums of A356533.

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[2, k]^2, {k, 1, n}], {n, 1, 40}]
  • PARI
    a(n) = sum(k=1, n, sigma(k, 2)^2); \\ Michel Marcus, Aug 11 2022

Formula

a(n) ~ 189 * zeta(3)^2 * zeta(5) * n^5 / Pi^6.

A356536 a(n) = Sum_{k=1..n} sigma_3(k)^2.

Original entry on oeis.org

1, 82, 866, 6195, 22071, 85575, 203911, 546136, 1119185, 2405141, 4179365, 8357301, 13188505, 22773721, 35220505, 57132266, 81279662, 127696631, 174756231, 259359435, 352134859, 495847003, 643907227, 912211627, 1160305628, 1551633152, 1969426752, 2600039296
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 11 2022

Keywords

Comments

Partial sums of A356534.
In general, for m>0, Sum_{k=1..n} sigma_m(k)^2 ~ zeta(2*m+1) * zeta(m+1)^2 * n^(2*m+1) / ((2*m+1) * zeta(2*m+2)).

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[3, k]^2, {k, 1, n}], {n, 1, 40}]
    Accumulate[DivisorSigma[3,Range[40]]^2] (* This program is much more efficient than the first program above. *) (* Harvey P. Dale, Feb 27 2023 *)
  • PARI
    a(n) = sum(k=1, n, sigma(k, 3)^2); \\ Michel Marcus, Aug 11 2022

Formula

a(n) ~ zeta(7) * n^7 / 6.

A379812 a(n) = sigma_1(n) * sigma_2(n).

Original entry on oeis.org

1, 15, 40, 147, 156, 600, 400, 1275, 1183, 2340, 1464, 5880, 2380, 6000, 6240, 10571, 5220, 17745, 7240, 22932, 16000, 21960, 12720, 51000, 20181, 35700, 32800, 58800, 25260, 93600, 30784, 85995, 58560, 78300, 62400, 173901, 52060, 108600, 95200, 198900, 70644
Offset: 1

Views

Author

Amiram Eldar, Jan 03 2025

Keywords

References

  • Srinivasa Ramanujan, Collected papers, edited by G. H. Hardy et al., Chelsea, 1962, chapter 17, pp. 133-135.

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ DivisorSigma[{1, 2}, n]; Array[a, 50]
  • PARI
    a(n) = {my(f = factor(n)); sigma(f) * sigma(f, 2);}

Formula

a(n) = A000203(n) * A001157(n).
Multiplicative with a(p^e) = (p^(e+1)-1) * (p^(2*e+2)-1) / ((p-1) * (p^2-1)).
Dirichlet g.f.: zeta(s) * zeta(s-1) * zeta(s-2) * zeta(s-3) / zeta(2*s-3).
In general, Dirichlet g.f. of sigma_i(n) * sigma_j(n): zeta(s) * zeta(s-i) * zeta(s-j) * zeta(s-i-j) / zeta(2*s-i-j) (Ramanujan, 1916).
Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = zeta(2) * zeta(3) * zeta(4) / zeta(5) = zeta(3) * Pi^6 / (540*zeta(5)) = 2.06386841111121962734... .
In general, Sum_{k=1..n} sigma_i(k) * sigma_j(k) ~ c(i,j) * n^(i+j+1) / (i+j+1), for i, j >= 1, where c(i,j) = zeta(i+1) * zeta(j+1) * zeta(i+j+1) / zeta(i+j+2).
G.f.: Sum_{k>=1} Sum_{l>=1} k*l^2*x^lcm(k, l)/(1 - x^lcm(k, l)). - Miles Wilson, Jul 10 2025

A379813 a(n) = sigma_1(n) * sigma_3(n).

Original entry on oeis.org

1, 27, 112, 511, 756, 3024, 2752, 8775, 9841, 20412, 15984, 57232, 30772, 74304, 84672, 145111, 88452, 265707, 137200, 386316, 308224, 431568, 292032, 982800, 488281, 830844, 817600, 1406272, 731700, 2286144, 953344, 2359287, 1790208, 2388204, 2080512, 5028751
Offset: 1

Views

Author

Amiram Eldar, Jan 03 2025

Keywords

Comments

See A379812 for more links and Ramanujan's general formula.

References

  • Srinivasa Ramanujan, Collected papers, edited by G. H. Hardy et al., Chelsea, 1962, chapter 17, pp. 133-135.

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ DivisorSigma[{1, 3}, n]; Array[a, 50]
  • PARI
    a(n) = {my(f = factor(n)); sigma(f) * sigma(f, 3);}

Formula

a(n) = A000203(n) * A001158(n).
Multiplicative with a(p^e) = (p^(e+1)-1) * (p^(3*e+3)-1) / ((p-1) * (p^3-1)).
Dirichlet g.f.: zeta(s) * zeta(s-1) * zeta(s-3) * zeta(s-4) / zeta(2*s-4).
Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = 7 * zeta(5) / 4 = 1.81462357150089737107... .

A143237 Triangle read by rows, T(n, k) = A000203(n)*A000203(k), for n >= 1, 1 <= k <= n.

Original entry on oeis.org

1, 3, 9, 4, 12, 16, 7, 21, 28, 49, 6, 18, 24, 42, 36, 12, 36, 48, 84, 72, 144, 8, 24, 32, 56, 48, 96, 64, 15, 45, 60, 105, 90, 180, 120, 225, 13, 39, 52, 91, 78, 156, 104, 195, 169, 18, 54, 72, 126, 108, 216, 144, 270, 234, 324, 12, 36, 48, 84, 72, 144, 96, 180, 156, 216, 144
Offset: 1

Views

Author

Gary W. Adamson, Aug 01 2008

Keywords

Examples

			First few rows of the triangle =
   1;
   3,  9;
   4, 12, 16;
   7, 21, 28,  49;
   6, 18, 24,  42, 36;
  12, 36, 48,  84, 72, 144;
   8, 24, 32,  56, 48,  96,  64;
  15, 45, 60, 105, 90, 180, 120, 225;
  13, 39, 52,  91, 78, 156, 104, 195, 169;
  ...
T(6,3) = 48 = sigma(6)*sigma(3) = 12*4
		

Crossrefs

Cf. A000203, A024916, A072861 (right diagonal), A130208, A143238 (row sums).

Programs

  • Magma
    A143237:= func< n,k | DivisorSigma(1,n)*DivisorSigma(1,k) >;
    [A143237(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Sep 12 2024
    
  • Mathematica
    A143237[n_, k_]:= DivisorSigma[1,n]*DivisorSigma[1,k];
    Table[A143237[n,k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Sep 12 2024 *)
  • SageMath
    def A143237(n,k): return sigma(n,1)*sigma(k,1)
    flatten([[A143237(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Sep 12 2024

Formula

Triangle read by rows, A130208 * A000012 * A130208, for 1 <= k <= n, n >= 1.
T(n, k) = sigma(n)*sigma(k), where sigma(n) = A000203(n).
Sum_{k=1..n} T(n, k) = A143238(n) (row sums).

Extensions

New title by G. C. Greubel, Sep 12 2024

A232355 Numbers k such that sigma(triangular(k)) = sigma(k)^2.

Original entry on oeis.org

1, 11, 695, 991, 2839, 3707, 9347, 10703, 12847, 27089, 42251, 56419, 74671, 115289, 168739, 191051, 219295, 233729, 280111, 300731, 326899, 353651, 430859, 611799, 642991, 661715, 1035827, 1116607, 1181579, 1234519, 1365491, 1485035, 1777099, 1854671, 1905875
Offset: 1

Views

Author

Alex Ratushnyak, Nov 22 2013

Keywords

Comments

Subsequence of A116990. - Michel Marcus, Jun 13 2015

Examples

			11 is in the sequence because sigma(11*12/2) = sigma(66) = 144 = 12^2 = sigma(11)^2.
		

Crossrefs

Cf. A000203 (sigma(n): sum of divisors of n), A000217 (triangular(n): = n*(n+1)/2).
Cf. A074285 (sigma(triangular(n))), A072861 (sigma(n)^2).
Cf. A116990 (indices of triangular numbers whose sum of divisors is square).

Programs

  • Magma
    [n: n in [1..7*10^5] | SumOfDivisors(n*(n+1) div 2) eq SumOfDivisors(n)^2]; // Vincenzo Librandi, Jun 13 2015
  • Mathematica
    Select[Range@1000000, DivisorSigma[1, #]^2==DivisorSigma[1, (# (# + 1)/2)] &] (* Vincenzo Librandi, Jun 13 2015 *)
  • PARI
    isok(n) = sigma(n)^2 == sigma(n*(n+1)/2); \\ Michel Marcus, Nov 23 2013
    

Extensions

More terms from Michel Marcus, Nov 23 2013
Previous Showing 11-20 of 30 results. Next