A320059
Sum of divisors of n^2 that do not divide n.
Original entry on oeis.org
0, 4, 9, 24, 25, 79, 49, 112, 108, 199, 121, 375, 169, 375, 379, 480, 289, 808, 361, 919, 709, 895, 529, 1591, 750, 1239, 1053, 1711, 841, 2749, 961, 1984, 1681, 2095, 1719, 3660, 1369, 2607, 2323, 3847, 1681, 5091, 1849, 4039, 3673, 3799, 2209, 6519, 2744, 5374
Offset: 1
-
[DivisorSigma(1, n^2) - DivisorSigma(1, n): n in [1..70]]; // Vincenzo Librandi, Oct 05 2018
-
map(n -> numtheory:-sigma(n^2)-numtheory:-sigma(n), [$1..100]); # Robert Israel, Oct 04 2018
-
Table[DivisorSigma[1, n^2] - DivisorSigma[1, n], {n, 70}] (* Vincenzo Librandi, Oct 05 2018 *)
-
a(n) = sigma(n^2)-sigma(n)
-
from _future_ import division
from sympy import factorint
def A320059(n):
c1, c2 = 1, 1
for p, a in factorint(n).items():
c1 *= (p**(2*a+1)-1)//(p-1)
c2 *= (p**(a+1)-1)//(p-1)
return c1-c2 # Chai Wah Wu, Oct 05 2018
A361147
a(n) = sigma(n)^3.
Original entry on oeis.org
1, 27, 64, 343, 216, 1728, 512, 3375, 2197, 5832, 1728, 21952, 2744, 13824, 13824, 29791, 5832, 59319, 8000, 74088, 32768, 46656, 13824, 216000, 29791, 74088, 64000, 175616, 27000, 373248, 32768, 250047, 110592, 157464, 110592, 753571, 54872, 216000, 175616
Offset: 1
-
Table[DivisorSigma[1, n]^3, {n, 1, 50}]
-
a(n) = sigma(n)^3;
-
for(n=1, 100, print1(direuler(p=2, n, (1 + p*X*(2 + 2*p + p^2*X)) / ((1-X)*(1-p*X)*(1-p^2*X)*(1-p^3*X)))[n], ", "))
A066293
a(n) = A000203(n)^2 - A001157(n) = sigma(n)^2 - sigma_2(n).
Original entry on oeis.org
0, 4, 6, 28, 10, 94, 14, 140, 78, 194, 22, 574, 26, 326, 316, 620, 34, 1066, 38, 1218, 524, 686, 46, 2750, 310, 914, 780, 2086, 58, 3884, 62, 2604, 1084, 1466, 1004, 6370, 74, 1790, 1436, 5890, 82, 6716, 86, 4494, 3718, 2534, 94, 11966, 798, 5394, 2284
Offset: 1
-
a[n_] := DivisorSigma[1, n]^2 - DivisorSigma[2, n]; Array[a, 50] (* Amiram Eldar, Jul 31 2019 *)
-
a(n) = sigma(n)^2 - sigma(n, 2); \\ Michel Marcus, Mar 22 2020
A068484
Numbers k that divide phi(k)^2 + sigma(k)^2.
Original entry on oeis.org
1, 2, 10, 45, 65, 180, 212, 222, 369, 588, 810, 864, 1274, 1521, 1836, 2548, 2940, 3114, 3552, 4770, 5496, 5684, 6027, 6642, 8820, 9140, 10464, 10614, 13311, 14688, 15210, 20737, 21600, 22776, 26900, 27000, 27270, 28476, 28518, 42212, 42336
Offset: 1
-
Filtered([1..42500],n->(Phi(n)^2+Sigma(n)^2) mod n=0); # Muniru A Asiru, Oct 16 2018
-
with(numtheory): select(n->modp(phi(n)^2+sigma(n)^2,n)=0,[$1..42500]); # Muniru A Asiru, Oct 16 2018
-
Select[Range[7000], IntegerQ[(EulerPhi[#]^2 + DivisorSigma[1, #]^2)/#] &] (* G. C. Greubel, Oct 15 2018 *)
A109693
Decimal expansion of Sum_{k>=1} 1/sigma(k)^2.
Original entry on oeis.org
1, 3, 0, 6, 4, 5, 6, 5, 1, 2, 0, 3, 8, 9, 5, 0, 5, 6, 8, 0, 1, 0, 7, 4, 9, 4, 8, 7, 0, 9, 1, 2, 7, 1, 5, 4, 9, 7, 5, 8, 3, 9, 0, 7, 9, 1, 5, 6, 6, 4, 9, 1, 0, 3, 7, 3, 6, 0, 9, 6, 9, 9, 5, 9, 8, 6, 1, 5, 3, 4, 2, 6, 4, 5, 7, 6, 6, 8, 2, 8, 7, 1, 5, 9, 9, 8, 1
Offset: 1
-
$MaxExtraPrecision = m = 1000; f[p_, m_] := 1 + Sum[(p - 1)^2/(p^(k + 1) - 1)^2, {k, 1, m}]; c = Rest[CoefficientList[Series[Log[f[1/x, m]], {x, 0, m}], x]]*Range[m]; RealDigits[f[2, Infinity] * Exp[NSum[Indexed[c, n]*((PrimeZetaP[n] - 1/2^n)/n), {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]] (* Amiram Eldar, Nov 14 2020 *)
-
my(N=1000000000); prodeuler(p=2,N, sum(k=1,200/log(p),if(k==1,1.,1./((p^k-1)/(p-1))^2)))*(1+1/N/log(N))
A127574
Triangle T(n,k) = k*sigma(n) if k divides n, else 0.
Original entry on oeis.org
1, 3, 6, 4, 0, 12, 7, 14, 0, 28, 6, 0, 0, 0, 30, 12, 24, 36, 0, 0, 72, 8, 0, 0, 0, 0, 0, 56, 15, 30, 0, 60, 0, 0, 0, 120, 13, 0, 39, 0, 0, 0, 0, 0, 117, 18, 36, 0, 0, 90, 0, 0, 0, 0, 180, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 132, 28, 56, 84, 112, 0, 168, 0, 0, 0, 0, 0, 336
Offset: 1
First few rows of the triangle are:
1;
3, 6;
4, 0, 12;
7, 14, 0, 28;
6, 0, 0, 0, 30;
12, 24, 36, 0, 0, 72;
...
A180608
O.g.f.: exp( Sum_{n>=1} A067692(n)*x^n/n ), where A067692(n) = [sigma(n)^2 + sigma(n,2)]/2.
Original entry on oeis.org
1, 1, 4, 8, 21, 39, 93, 171, 364, 675, 1338, 2433, 4641, 8282, 15222, 26811, 47920, 83046, 145288, 248164, 425970, 718303, 1213106, 2020540, 3365352, 5541996, 9115640, 14856657, 24164430, 39002462, 62800603, 100454208, 160257140
Offset: 0
O.g.f.: A(x) = 1 + x + 4*x^2 + 8*x^3 + 21*x^4 + 39*x^5 + 93*x^6 +...
log(A(x)) = x + 7*x^2/2 + 13*x^3/3 + 35*x^4/4 + 31*x^5/5 + 97*x^6/6 +...
-
nmax = 40; $RecursionLimit -> Infinity; a[n_] := a[n] = If[n == 0, 1, Sum[(DivisorSigma[1, k]^2 + DivisorSigma[2, k])/2*a[n-k], {k, 1, n}]/n]; Table[a[n], {n, 0, nmax}] (* Vaclav Kotesovec, Oct 28 2024 *)
-
{a(n)=polcoeff(exp(sum(m=1, n, (sigma(m)^2+sigma(m,2))/2*x^m/m)+x*O(x^n)), n)}
A344347
Numbers k such that sigma(k)^2 is divisible by k-1.
Original entry on oeis.org
2, 3, 5, 10, 33, 55, 82, 129, 136, 145, 261, 351, 385, 406, 442, 513, 649, 897, 1090, 2241, 4726, 5185, 8650, 13601, 17101, 17641, 18241, 26625, 26937, 29697, 29953, 32896, 34561, 35841, 38417, 44955, 46081, 46593, 51985, 63505, 65703, 66249, 84376, 93313, 97903
Offset: 1
For k=10, sigma(10)^2 / (10-1) = 18^2 / 9 = 324 / 9 = 36.
-
Select[Range[2, 10^5], Divisible[DivisorSigma[1, #]^2, # - 1] &] (* Amiram Eldar, May 15 2021 *)
-
list(nn) = for(n=2, nn, if (sigma(n)^2 % (n-1) == 0, print1(n, ", ")))
list(100000)
A379635
Triangle read by rows: T(n,k) = A000203(k)*A000203(n-k+1), n >= 1, k >= 1.
Original entry on oeis.org
1, 3, 3, 4, 9, 4, 7, 12, 12, 7, 6, 21, 16, 21, 6, 12, 18, 28, 28, 18, 12, 8, 36, 24, 49, 24, 36, 8, 15, 24, 48, 42, 42, 48, 24, 15, 13, 45, 32, 84, 36, 84, 32, 45, 13, 18, 39, 60, 56, 72, 72, 56, 60, 39, 18, 12, 54, 52, 105, 48, 144, 48, 105, 52, 54, 12, 28, 36, 72, 91, 90, 96, 96, 90, 91, 72, 36, 28
Offset: 1
Triangle begins:
1;
3, 3;
4, 9, 4;
7, 12, 12, 7;
6, 21, 16, 21, 6;
12, 18, 28, 28, 18, 12;
8, 36, 24, 49, 24, 36, 8;
15, 24, 48, 42, 42, 48, 24, 15;
13, 45, 32, 84, 36, 84, 32, 45, 13;
18, 39, 60, 56, 72, 72, 56, 60, 39, 18;
12, 54, 52, 105, 48, 144, 48, 105, 52, 54, 12;
28, 36, 72, 91, 90, 96, 96, 90, 91, 72, 36, 28;
14, 84, 48, 126, 78, 180, 64, 180, 78, 126, 48, 84, 14;
...
For n = 10 the calculation of the row 10 is as follows:
k A000203 T(10,k)
1 1 * 18 = 18
2 3 * 13 = 39
3 4 * 15 = 60
4 7 * 8 = 56
5 6 * 12 = 72
6 12 * 6 = 72
7 8 * 7 = 56
8 15 * 4 = 60
9 13 * 3 = 39
10 18 * 1 = 18
A000203
.
Column 1 and leading diagonal give
A000203.
-
T[n_,k_]:=DivisorSigma[1,k]*DivisorSigma[1,n-k+1];Table[T[n,k],{n,12},{k,n }]//Flatten (* James C. McMahon, Jan 15 2025 *)
-
T(n, k)=sigma(k)*sigma(n-k+1)
A383614
The unique sequence such that Sum_{d|n} d*a(d)^(n/d) = sigma(n)^2 for every n.
Original entry on oeis.org
1, 4, 5, 4, 7, -10, 9, -44, -23, -197, 13, -845, 15, -2340, -701, -9164, 19, -31578, 21, -124979, -11355, -381326, 25, -1778580, -3323, -5162265, -212899, -21915630, 31, -70256029, 33, -311369996, -4439583, -1010580635, -129393, -4135827284, 39, -14467258386
Offset: 1
For n = 1, the equation gives a(1) = sigma(1)^2 = 1;
For n = 6, the equation gives 1*1^6 + 2*4^3 + 3*5^2 + 6*a(6) = sigma(6)^2 = 144, so a(6) = -10.
-
lista(nn) = {my(v=vector(nn)); v[1] = 1; for(n=2, nn, s = sigma(n)^2; fordiv(n, d, s -= d*v[d]^(n/d)); v[n]=s/n); v}
Comments