cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A320059 Sum of divisors of n^2 that do not divide n.

Original entry on oeis.org

0, 4, 9, 24, 25, 79, 49, 112, 108, 199, 121, 375, 169, 375, 379, 480, 289, 808, 361, 919, 709, 895, 529, 1591, 750, 1239, 1053, 1711, 841, 2749, 961, 1984, 1681, 2095, 1719, 3660, 1369, 2607, 2323, 3847, 1681, 5091, 1849, 4039, 3673, 3799, 2209, 6519, 2744, 5374
Offset: 1

Views

Author

Keywords

Comments

sigma(n^2) is always odd, so this sequence has the opposite parity from sigma(n): even if n is a square or twice a square, odd otherwise.

Crossrefs

Programs

  • Magma
    [DivisorSigma(1, n^2) - DivisorSigma(1, n): n in [1..70]]; // Vincenzo Librandi, Oct 05 2018
    
  • Maple
    map(n -> numtheory:-sigma(n^2)-numtheory:-sigma(n), [$1..100]); # Robert Israel, Oct 04 2018
  • Mathematica
    Table[DivisorSigma[1, n^2] - DivisorSigma[1, n], {n, 70}] (* Vincenzo Librandi, Oct 05 2018 *)
  • PARI
    a(n) = sigma(n^2)-sigma(n)
    
  • Python
    from _future_ import division
    from sympy import factorint
    def A320059(n):
        c1, c2 = 1, 1
        for p, a in factorint(n).items():
            c1 *= (p**(2*a+1)-1)//(p-1)
            c2 *= (p**(a+1)-1)//(p-1)
        return c1-c2 # Chai Wah Wu, Oct 05 2018

Formula

a(n) = sigma(n^2) - sigma(n).
a(n) = A065764(n) - A000203(n).
a(n) = n^2 iff n is prime. - Altug Alkan, Oct 04 2018

A361147 a(n) = sigma(n)^3.

Original entry on oeis.org

1, 27, 64, 343, 216, 1728, 512, 3375, 2197, 5832, 1728, 21952, 2744, 13824, 13824, 29791, 5832, 59319, 8000, 74088, 32768, 46656, 13824, 216000, 29791, 74088, 64000, 175616, 27000, 373248, 32768, 250047, 110592, 157464, 110592, 753571, 54872, 216000, 175616
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 02 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[1, n]^3, {n, 1, 50}]
  • PARI
    a(n) = sigma(n)^3;
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + p*X*(2 + 2*p + p^2*X)) / ((1-X)*(1-p*X)*(1-p^2*X)*(1-p^3*X)))[n], ", "))

Formula

Multiplicative with a(p^e) = ((p^(e+1)-1)/(p-1))^3.
Dirichlet g.f.: zeta(s) * zeta(s-1) * zeta(s-2) * zeta(s-3) * Product_{primes p} (1 + 1/p^(2*s-3) + 2/p^(s-1) + 2/p^(s-2)).
Sum_{k=1..n} a(k) ~ c * Pi^6 * zeta(3) * n^4 / 2160, where c = Product_{primes p} (1 + 2/p^2 + 2/p^3 + 1/p^5) = 2.83598357433419286770442457158038489640898183...
a(n) = A000578(A000203(n)).

A066293 a(n) = A000203(n)^2 - A001157(n) = sigma(n)^2 - sigma_2(n).

Original entry on oeis.org

0, 4, 6, 28, 10, 94, 14, 140, 78, 194, 22, 574, 26, 326, 316, 620, 34, 1066, 38, 1218, 524, 686, 46, 2750, 310, 914, 780, 2086, 58, 3884, 62, 2604, 1084, 1466, 1004, 6370, 74, 1790, 1436, 5890, 82, 6716, 86, 4494, 3718, 2534, 94, 11966, 798, 5394, 2284
Offset: 1

Views

Author

Labos Elemer, Dec 12 2001

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, n]^2 - DivisorSigma[2, n]; Array[a, 50] (* Amiram Eldar, Jul 31 2019 *)
  • PARI
    a(n) = sigma(n)^2 - sigma(n, 2); \\ Michel Marcus, Mar 22 2020

Formula

For p prime, a(p) = 2p.
From Amiram Eldar, Mar 17 2024: (Start)
a(n) = A072861(n) - A001157(n).
Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(3)/2 = 0.601028451579... . (End)

A068484 Numbers k that divide phi(k)^2 + sigma(k)^2.

Original entry on oeis.org

1, 2, 10, 45, 65, 180, 212, 222, 369, 588, 810, 864, 1274, 1521, 1836, 2548, 2940, 3114, 3552, 4770, 5496, 5684, 6027, 6642, 8820, 9140, 10464, 10614, 13311, 14688, 15210, 20737, 21600, 22776, 26900, 27000, 27270, 28476, 28518, 42212, 42336
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Comments

a(275) > 7*10^7. - G. C. Greubel, Oct 15 2018

Crossrefs

Cf. A072861 (sigma(n)^2), A127473 (phi(n)^2).

Programs

  • GAP
    Filtered([1..42500],n->(Phi(n)^2+Sigma(n)^2) mod n=0); # Muniru A Asiru, Oct 16 2018
  • Maple
    with(numtheory): select(n->modp(phi(n)^2+sigma(n)^2,n)=0,[$1..42500]); # Muniru A Asiru, Oct 16 2018
  • Mathematica
    Select[Range[7000], IntegerQ[(EulerPhi[#]^2 + DivisorSigma[1, #]^2)/#] &] (* G. C. Greubel, Oct 15 2018 *)

A109693 Decimal expansion of Sum_{k>=1} 1/sigma(k)^2.

Original entry on oeis.org

1, 3, 0, 6, 4, 5, 6, 5, 1, 2, 0, 3, 8, 9, 5, 0, 5, 6, 8, 0, 1, 0, 7, 4, 9, 4, 8, 7, 0, 9, 1, 2, 7, 1, 5, 4, 9, 7, 5, 8, 3, 9, 0, 7, 9, 1, 5, 6, 6, 4, 9, 1, 0, 3, 7, 3, 6, 0, 9, 6, 9, 9, 5, 9, 8, 6, 1, 5, 3, 4, 2, 6, 4, 5, 7, 6, 6, 8, 2, 8, 7, 1, 5, 9, 9, 8, 1
Offset: 1

Views

Author

Keywords

Examples

			1.3064565120...
		

Crossrefs

Cf. A000203 (sigma function), A072861.

Programs

  • Mathematica
    $MaxExtraPrecision = m = 1000; f[p_, m_] := 1 + Sum[(p - 1)^2/(p^(k + 1) - 1)^2, {k, 1, m}]; c = Rest[CoefficientList[Series[Log[f[1/x, m]], {x, 0, m}], x]]*Range[m]; RealDigits[f[2, Infinity] * Exp[NSum[Indexed[c, n]*((PrimeZetaP[n] - 1/2^n)/n), {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]] (* Amiram Eldar, Nov 14 2020 *)
  • PARI
    my(N=1000000000); prodeuler(p=2,N, sum(k=1,200/log(p),if(k==1,1.,1./((p^k-1)/(p-1))^2)))*(1+1/N/log(N))

Formula

Product_{p prime} Sum_{k>=0} 1/sigma(p^k)^2.

Extensions

More terms from Amiram Eldar, Nov 14 2020

A127574 Triangle T(n,k) = k*sigma(n) if k divides n, else 0.

Original entry on oeis.org

1, 3, 6, 4, 0, 12, 7, 14, 0, 28, 6, 0, 0, 0, 30, 12, 24, 36, 0, 0, 72, 8, 0, 0, 0, 0, 0, 56, 15, 30, 0, 60, 0, 0, 0, 120, 13, 0, 39, 0, 0, 0, 0, 0, 117, 18, 36, 0, 0, 90, 0, 0, 0, 0, 180, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 132, 28, 56, 84, 112, 0, 168, 0, 0, 0, 0, 0, 336
Offset: 1

Views

Author

Gary W. Adamson, Jan 19 2007

Keywords

Examples

			First few rows of the triangle are:
   1;
   3,  6;
   4,  0, 12;
   7, 14,  0, 28;
   6,  0,  0,  0, 30;
  12, 24, 36,  0,  0, 72;
  ...
		

Crossrefs

Cf. A127093, A127573, A064987, A000203, A072861 (row sums).

Formula

T(n,k) = Sum_{j=k..n} A130208(n,j)*A127093(j,k), product of the two infinite lower triangular matrices.
T(n,1) = A000203(n).
T(n,n) = A064987(n).

A180608 O.g.f.: exp( Sum_{n>=1} A067692(n)*x^n/n ), where A067692(n) = [sigma(n)^2 + sigma(n,2)]/2.

Original entry on oeis.org

1, 1, 4, 8, 21, 39, 93, 171, 364, 675, 1338, 2433, 4641, 8282, 15222, 26811, 47920, 83046, 145288, 248164, 425970, 718303, 1213106, 2020540, 3365352, 5541996, 9115640, 14856657, 24164430, 39002462, 62800603, 100454208, 160257140
Offset: 0

Views

Author

Paul D. Hanna, Oct 10 2010

Keywords

Comments

sigma(n) = A000203(n), sum of divisors of n;
sigma(n,2) = A001157(n), sum of squares of divisors of n.

Examples

			O.g.f.: A(x) = 1 + x + 4*x^2 + 8*x^3 + 21*x^4 + 39*x^5 + 93*x^6 +...
log(A(x)) = x + 7*x^2/2 + 13*x^3/3 + 35*x^4/4 + 31*x^5/5 + 97*x^6/6 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; $RecursionLimit -> Infinity; a[n_] := a[n] = If[n == 0, 1, Sum[(DivisorSigma[1, k]^2 + DivisorSigma[2, k])/2*a[n-k], {k, 1, n}]/n]; Table[a[n], {n, 0, nmax}] (* Vaclav Kotesovec, Oct 28 2024 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, (sigma(m)^2+sigma(m,2))/2*x^m/m)+x*O(x^n)), n)}

Formula

log(a(n)) ~ 3*(7*zeta(3))^(1/3) * n^(2/3) / 2^(4/3). - Vaclav Kotesovec, Oct 29 2024

A344347 Numbers k such that sigma(k)^2 is divisible by k-1.

Original entry on oeis.org

2, 3, 5, 10, 33, 55, 82, 129, 136, 145, 261, 351, 385, 406, 442, 513, 649, 897, 1090, 2241, 4726, 5185, 8650, 13601, 17101, 17641, 18241, 26625, 26937, 29697, 29953, 32896, 34561, 35841, 38417, 44955, 46081, 46593, 51985, 63505, 65703, 66249, 84376, 93313, 97903
Offset: 1

Views

Author

Zdenek Cervenka, May 15 2021

Keywords

Examples

			For k=10, sigma(10)^2 / (10-1) = 18^2 / 9 = 324 / 9 = 36.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 10^5], Divisible[DivisorSigma[1, #]^2, # - 1] &] (* Amiram Eldar, May 15 2021 *)
  • PARI
    list(nn) = for(n=2, nn, if (sigma(n)^2 % (n-1) == 0, print1(n, ", ")))
    list(100000)

A379635 Triangle read by rows: T(n,k) = A000203(k)*A000203(n-k+1), n >= 1, k >= 1.

Original entry on oeis.org

1, 3, 3, 4, 9, 4, 7, 12, 12, 7, 6, 21, 16, 21, 6, 12, 18, 28, 28, 18, 12, 8, 36, 24, 49, 24, 36, 8, 15, 24, 48, 42, 42, 48, 24, 15, 13, 45, 32, 84, 36, 84, 32, 45, 13, 18, 39, 60, 56, 72, 72, 56, 60, 39, 18, 12, 54, 52, 105, 48, 144, 48, 105, 52, 54, 12, 28, 36, 72, 91, 90, 96, 96, 90, 91, 72, 36, 28
Offset: 1

Views

Author

Omar E. Pol, Jan 14 2025

Keywords

Examples

			Triangle begins:
   1;
   3,   3;
   4,   9,   4;
   7,  12,  12,   7;
   6,  21,  16,  21,   6;
  12,  18,  28,  28,  18,  12;
   8,  36,  24,  49,  24,  36,   8;
  15,  24,  48,  42,  42,  48,  24,  15;
  13,  45,  32,  84,  36,  84,  32,  45,  13;
  18,  39,  60,  56,  72,  72,  56,  60,  39,  18;
  12,  54,  52, 105,  48, 144,  48, 105,  52,  54,  12;
  28,  36,  72,  91,  90,  96,  96,  90,  91,  72,  36,  28;
  14,  84,  48, 126,  78, 180,  64, 180,  78, 126,  48,  84,  14;
  ...
For n = 10 the calculation of the row 10 is as follows:
    k    A000203         T(10,k)
    1       1   *  18   =   18
    2       3   *  13   =   39
    3       4   *  15   =   60
    4       7   *   8   =   56
    5       6   *  12   =   72
    6      12   *   6   =   72
    7       8   *   7   =   56
    8      15   *   4   =   60
    9      13   *   3   =   39
   10      18   *   1   =   18
                 A000203
.
		

Crossrefs

Column 1 and leading diagonal give A000203.
Middle diagonal gives A072861.
Row sums give A000385.
Cf. A221529.

Programs

  • Mathematica
    T[n_,k_]:=DivisorSigma[1,k]*DivisorSigma[1,n-k+1];Table[T[n,k],{n,12},{k,n }]//Flatten (* James C. McMahon, Jan 15 2025 *)
  • PARI
    T(n, k)=sigma(k)*sigma(n-k+1)

A383614 The unique sequence such that Sum_{d|n} d*a(d)^(n/d) = sigma(n)^2 for every n.

Original entry on oeis.org

1, 4, 5, 4, 7, -10, 9, -44, -23, -197, 13, -845, 15, -2340, -701, -9164, 19, -31578, 21, -124979, -11355, -381326, 25, -1778580, -3323, -5162265, -212899, -21915630, 31, -70256029, 33, -311369996, -4439583, -1010580635, -129393, -4135827284, 39, -14467258386
Offset: 1

Views

Author

Yifan Xie, May 02 2025

Keywords

Comments

Replace the sequence A072861 on the right-hand side of the equation with any integer sequence. It can be proved that the resulting sequence {a(n)} contain only integer terms if and only if for any prime p and positive integer n such that val(n, p) = k, p^k divides s(n) - s(n/p). The simplest sequence satisfying this property is A000203, and the resulting sequence {a(n)} is the constant sequence of 1's.
In 2025 China Team Selection Test, Test 4, Day 1, Problem 1, this sequence gives {z(n)} when {x(n)} and {y(n)} are constant sequences of 1's.

Examples

			For n = 1, the equation gives a(1) = sigma(1)^2 = 1;
For n = 6, the equation gives 1*1^6 + 2*4^3 + 3*5^2 + 6*a(6) = sigma(6)^2 = 144, so a(6) = -10.
		

Crossrefs

Programs

  • PARI
    lista(nn) = {my(v=vector(nn)); v[1] = 1; for(n=2, nn, s = sigma(n)^2; fordiv(n, d, s -= d*v[d]^(n/d)); v[n]=s/n); v}

Formula

For prime p, a(p) = p + 2.
Previous Showing 21-30 of 30 results.