cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 42 results. Next

A309968 Numbers n > 1 that give record values for f(n) = sigma(n)/n - e^gamma * log(log(e*d(n))) - e^gamma * log(log(log(e^e * d(n)))), where d(n) is the number of divisors of n (A000005) and sigma(n) is their sum (A000203).

Original entry on oeis.org

2, 74801040398884800, 224403121196654400, 3066842656354276800, 6133685312708553600, 9200527969062830400, 18401055938125660800, 131874234223233902400, 263748468446467804800, 395622702669701707200, 791245405339403414400, 6198089008491993412800, 12396178016983986825600
Offset: 1

Views

Author

Amiram Eldar, Aug 25 2019

Keywords

Comments

Nicolas proved that f(n) reaches its maximum at n = 2^7 * (3#)^4 * 5# * (7#)^2 * 19# * 47# * 277# * 45439# ~ 8.0244105... * 10^19786 which is the last term of this sequence (prime(n)# = A002110(n) is the n-th primorial).

Crossrefs

Subsequence of A025487.

A331094 Decimal expansion of Pi^Pi - e^e.

Original entry on oeis.org

2, 1, 3, 0, 7, 8, 9, 7, 3, 6, 5, 7, 2, 8, 6, 4, 7, 5, 8, 1, 2, 3, 0, 3, 9, 5, 7, 5, 0, 0, 6, 2, 2, 1, 1, 7, 6, 0, 8, 3, 6, 9, 5, 9, 8, 6, 5, 3, 7, 2, 6, 7, 8, 9, 6, 9, 5, 6, 8, 5, 8, 9, 5, 1, 7, 0, 1, 9, 2, 4, 3, 3, 9, 5, 1, 5, 0, 7, 6, 5, 4, 7, 2, 0, 1, 1, 6, 2, 2, 9, 0, 7, 3, 4, 8, 9, 0, 1, 3, 9
Offset: 2

Views

Author

Ahmad J. Masad, Jan 08 2020

Keywords

Examples

			21.30789736572864758123039575006221176...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^Pi - Exp[E], 10, 100][[1]] (* Amiram Eldar, Jan 09 2020 *)
  • PARI
    Pi^Pi - exp(exp(1)) \\ Michel Marcus, Jan 09 2020

A331189 Decimal expansion of Pi^Pi + e^e.

Original entry on oeis.org

5, 1, 6, 1, 6, 4, 2, 1, 8, 4, 8, 6, 8, 7, 1, 7, 5, 9, 6, 0, 7, 5, 1, 2, 5, 6, 2, 9, 5, 3, 2, 2, 0, 3, 5, 5, 7, 1, 8, 9, 4, 0, 5, 6, 9, 3, 9, 0, 8, 4, 9, 5, 8, 5, 0, 7, 8, 5, 0, 0, 8, 2, 3, 2, 8, 8, 4, 8, 9, 0, 5, 3, 4, 2, 6, 1, 2, 6, 3, 4, 3, 3, 7, 2, 2, 8, 5, 3, 6, 8, 4, 4, 0, 6, 4, 6, 4, 8, 3, 1, 4, 8, 7, 9, 7
Offset: 2

Views

Author

Ahmad J. Masad, Jan 11 2020

Keywords

Examples

			51.61642184868717596075...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^Pi + Exp[E], 10, 100][[1]] (* Amiram Eldar, Jan 11 2020 *)

Formula

Equals A073233 + A073226.

A353246 Integer part of e[n]e, where [n] indicates hyper-n and e = 2.718281828... (using H. Kneser's proposal for n > 3).

Original entry on oeis.org

4, 5, 7, 15, 2075
Offset: 0

Views

Author

Marco Ripà, Apr 08 2022

Keywords

Comments

The common hyperoperation sequence is defined as follows: hyper-0 = zeration, hyper-1 = addition, hyper-2 = multiplication, hyper-3 = exponentiation, hyper-4 = tetration, and so on...
Thus e[0]e = e + 2, e[1]e = 2*e, e[2]e = e^2, e[3]e = e^e, and so on.
The fifth term of the twin sequence of the present one, floor(Pi[4]Pi), is much larger than 2075 and it is harder to calculate, while the integer part of e[4]Pi is 37149801960 (17.9 million times bigger than a(4)).

Examples

			For n = 3, a(3) = floor(e[3]e) = floor(e^e) = 15.
		

Crossrefs

Formula

a(n) = floor(e[n]e).

A096181 Floor (e^(n / log(n))).

Original entry on oeis.org

17, 15, 17, 22, 28, 36, 46, 60, 76, 98, 125, 158, 201, 254, 320, 403, 506, 634, 793, 989, 1233, 1533, 1904, 2360, 2922, 3612, 4459, 5498, 6771, 8328, 10231, 12556, 15393, 18851, 23063, 28189, 34423, 41998, 51195, 62353, 75883, 92274, 112119, 136131
Offset: 2

Views

Author

Robert G. Wilson v, Jun 19 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ Floor[ E^(n/Log[n])], {n, 2, 45}]

Extensions

Definition corrected and cross-refs added by Franklin T. Adams-Watters, Jan 25 2010

A096194 Engel expansion of exp(e).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 13, 27, 45, 212, 388, 735, 3422, 3913, 11095, 18232, 20624, 54745, 426826, 617936, 3424833, 3494454, 3664162, 5238283, 5650352, 17373150, 168850488, 716822623, 729646247, 1226034011, 3976121167
Offset: 1

Views

Author

Gerald McGarvey, Jul 25 2004

Keywords

Crossrefs

Cf. A073226.

Programs

  • Mathematica
    EngelExp[ A_, n_ ] := Join[ Array[ 1 &, Floor[ A ]], First@Transpose @ NestList[ {Ceiling[ 1/Expand[ #[[ 1 ]] #[[ 2 ]] - 1 ]], Expand[ #[[ 1 ]] #[[ 2 ]] - 1]} &, {Ceiling[ 1/(A - Floor[A]) ], A - Floor[A]}, n - 1 ]]; EngelExp[ N[E^E, 2^8], 26] (* Robert G. Wilson v, Jul 28 2008 *)

Extensions

Edited and extended by Robert G. Wilson v, Jul 28 2004

A116907 Continued fraction expansion for e^(-e) = 0.0659880358453125370767901875.

Original entry on oeis.org

0, 15, 6, 2, 13, 1, 3, 6, 2, 1, 1, 5, 1, 1, 1, 9, 4, 1, 1, 1, 6, 7, 1, 2, 4, 1, 2, 2, 24, 1, 2, 4, 56, 1, 1, 2, 4, 1, 75, 1, 5, 1, 2, 2, 1, 137, 2, 2, 97, 3, 16, 1, 1, 1, 1, 3, 5, 12, 1, 1, 2, 1, 53, 1, 2, 5, 3, 2, 4, 1, 2, 1, 39, 1, 2, 1, 4, 1, 11, 1, 5, 5, 1, 4, 1, 17, 12, 4, 82, 1, 4, 6, 25, 3, 2, 3, 39
Offset: 1

Views

Author

Jonathan Vos Post, Mar 16 2006

Keywords

Comments

e^(-e) = (1/e)^e = 1/(e^e) = (reciprocal of A073226). e^(-e) = 0.0659880358453125370767901875... = 0 + 1/15+ 1/6+ 1/2+ 1/13+ 1/1+ 1/3+ 1/6+ 1/2+ ... See also: A073230 Decimal expansion of (1/e)^e. See also: A064107 Continued fraction quotients for e^e = 15.15426223. See also: A058287 Continued fraction for e^Pi. See also: A058288 Continued fraction expansion of Pi^e.

Crossrefs

A171990 Least integer a(n) for which the iterated function log, iterated n times, is defined.

Original entry on oeis.org

1, 2, 3, 16, 3814280
Offset: 1

Views

Author

Keywords

Comments

Log(a(1)) is defined if a(1) > 0, so a(1) = 1.
Log(log(a(2))) is defined if log(a(2)) > 0 => a(2) > 1 => a(2) = 2.
The sequence grows rapidly: a(6) = 2.33150...10^1656520, and is too large to include here.

Examples

			a(2) = 2 because log(log(2)) is defined and log(log(1)) is not;
a(3) = 3 because log(log(log(3))) is defined;
a(4) = 16 because log(log(log(log(16)))) is defined.
From _Robert G. Wilson v_, Jul 05 2022: (Start)
a(3) = ceiling(A001113).
a(4) = ceiling(A073226).
a(5) = ceiling(A073227).
a(6) = ceiling(A085667). (End)
		

Crossrefs

Programs

  • PARI
    a(n) = my(k=1); while(1, my(s=k, i=0); while(s > 0, s=log(s); if(s > 0, i++)); if(i==n-1, return(k)); k++) \\ Felix Fröhlich, Nov 22 2015

Formula

For n > 2, a(n) = ceiling(e^(e^(...))) where e appears n-2 times.

A329458 Decimal expansion of x such that x^x * log(x) - x^x + 1 = 0, x > 1.

Original entry on oeis.org

2, 4, 1, 1, 7, 3, 9, 9, 3, 0, 5, 6, 0, 5, 5, 9, 2, 8, 1, 1, 4, 5, 1, 8, 9, 1, 9, 8, 0, 2, 4, 4, 6, 4, 1, 3, 2, 6, 1, 1, 7, 7, 3, 5, 6, 0, 3, 4, 0, 4, 6, 3, 7, 0, 1, 5, 3, 5, 1, 5, 4, 6, 7, 1, 3, 8, 6, 0, 7, 0, 7, 9, 9, 6, 1, 1, 9, 9, 0, 2, 9
Offset: 1

Views

Author

Rick Novile, Nov 16 2019

Keywords

Comments

Equivalent to the coordinates of the self-intersection point of the graph y^x - x^y = y - x, where x, y > 1.

Examples

			x = 2.41173993056055928114518919802446413261177356034046370153515467138607...
		

Crossrefs

Programs

  • Mathematica
    FindRoot[x^x Log[x] - x^x + 1 == 0, {x, 2.40737, 2.41474}, WorkingPrecision -> 1000]
  • PARI
    solve(x=2, 3, x^x * log(x) - x^x + 1) \\ Michel Marcus, Nov 16 2019
    
  • PARI
    solve(x=2, 3, x - exp(1-1/x^x)) \\ Michel Marcus, Jul 14 2020

Formula

x^x * log(x) - x^x + 1 = 0; x != 1.
y^x - x^y = y - x; y = x; x != 1.
x = exp(1-x^(-x)); x > 1. - Rick Novile, Jul 14 2020

A342476 Numbers m > 1 such that W(m) > W(k) for all 1 < k < m, where W(k) = omega(k)*log(log(k))/log(k).

Original entry on oeis.org

2, 3, 4, 5, 6, 10, 12, 14, 15, 30, 210, 2310, 30030, 510510, 9699690, 223092870
Offset: 1

Views

Author

Amiram Eldar, Mar 13 2021

Keywords

Comments

Includes the primorials prime(k)# = A002110(k) for 1 <= k <= 9.
Since the maximum of the function f(x) = log(log(x))/log(x) occurs at exp(e) = 15.154... (A073226), 15 is the largest term that is not a primorial.
The corresponding record values are -0.528..., 0.085..., 0.235..., 0.295..., 0.650..., 0.724..., 0.732..., 0.735..., 0.735..., 1.079..., 1.254..., 1.321..., 1.357..., 1.371..., 1.381..., 1.384...

References

  • József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter V, p. 168.

Crossrefs

Programs

  • Mathematica
    w[n_] := PrimeNu[n]*Log[Log[n]]/Log[n]; wmax = -1; seq = {}; Do[w1 = w[n]; If[w1 > wmax, wmax = w1; AppendTo[seq, n]], {n, 2, 2500}]; seq
Previous Showing 31-40 of 42 results. Next