A097524 Duplicate of A073703.
3, 5, 3, 3, 7, 3, 3, 3, 7, 3, 5, 5, 7, 3, 3, 3, 13, 5, 3, 7, 3, 5, 7, 3, 3, 31, 5, 13, 5, 3, 3, 7, 3, 3
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
n=3: 2*prime(3)+3=2*5+3=13 is prime, so a(3)=3; n=4: 2*prime(4)+5=2*7+5=19 is prime, so a(4)=5; ... n=8: 2*prime(8)+17=2*19+17=55 is not prime 2*prime(8)+13=2*19+13=51 is not prime ... 2*prime(8)+5=2*19+5=43 is prime, so a(8)=5;
a114235 n = head [p | let q = a000040 n, p <- reverse $ takeWhile (< q) a000040_list, a010051 (2 * q + p) == 1] -- Reinhard Zumkeller, Oct 29 2013
Table[p1 = Prime[n1]; n2 = 1; p2 = Prime[n1 - n2]; While[cp = 2*p1 + p2; ! PrimeQ[cp], n2++; If[n2 >= n1, Print[n1]]; p2 = Prime[n1 - n2]]; p2, {n1, 3, 202}]
n=2: prime[2]=3; 3+2*5=13 is prime, so a(2)=5; n=3: prime[3]=5; 5+2*7=19 is prime, so a(3)=7; ... n=7: prime[7]=17; 17+2*19=55 is not prime 17+2*23=63 is not prime ... 17+2*31=79 is prime, so a(7)=31.
a114262 n = head [q | let (p:ps) = drop (n - 1) a000040_list, q <- ps, a010051 (p + 2 * q) == 1] -- Reinhard Zumkeller, Oct 29 2013
Table[p1 = Prime[n1]; n2 = 1; p2 = Prime[n1 + n2]; While[cp = p1 + 2* p2; ! PrimeQ[cp], n2++; p2 = Prime[n1 + n2]]; p2, {n1, 2, 201}]
n=3: 2*prime(3)+prime(2)=2*5+3=13 is prime, so a(3)=2; n=4: 2*prime(4)+prime(2)=2*7+3=17 is prime, so a(4)=2; n=5: 2*prime(5)+prime(2)=2*11+3=25 is not prime ... 2*prime(5)+prime(4)=2*11+7=29 is prime, so a(5)=4.
a114233 n = head [m | m <- [1 .. n], a010051' (2 * a000040 n + a000040 m) == 1] -- Reinhard Zumkeller, Oct 31 2013
Table[p1 = Prime[n1]; n2 = 1; p2 = Prime[n2]; While[cp = 2*p1 + p2; ! PrimeQ[cp], n2++; If[n2 >= n1, Print[n1]]; p2 = Prime[n2]]; n2, { n1, 3, 202}] snm[n_]:=Module[{m=1,p=2Prime[n]},While[!PrimeQ[p+Prime[m]],m++];m]; Array[ snm,110,3] (* Harvey P. Dale, Sep 30 2017 *)
n=3: 2*prime(3)+prime(3-1)=2*5+3=13 is prime, so a(3)=1; n=4: 2*prime(4)+prime(4-1)=2*7+5=19 is prime, so a(4)=1; ... n=8: 2*prime(8)+prime(8-5)=2*19+5=43 is prime, so a(8)=5;
a114236 n = head [m | m <- [1..], a010051 (2 * a000040 n + a000040 (n - m)) == 1] -- Reinhard Zumkeller, Oct 31 2013
Table[p1 = Prime[n1]; n2 = 1; p2 = Prime[n1 - n2]; While[cp = 2*p1 + p2; ! PrimeQ[cp], n2++; If[n2 >= n1, Print[n1]]; p2 = Prime[n1 - n2]]; n2, {n1, 3, 202}]
k=2: 2*Prime[3]+Prime[2]=13 is prime, so n(2)=3; 2*Prime[4]+Prime[2]=17 2*Prime[5]+Prime[2]=25, ... 2*Prime[5]+Prime[4]=29 ==> n(4)=5;
Do[n[k] = 0, {k, 2, 2000}]; ct = 0; nm = 0; n2 = 0; n1 = 3; p1 = 5; While[ct < 200, n2 = 1; p2 = Prime[n2]; While[cp = 2*p1 + p2; ! PrimeQ[cp], n2++; p2 = Prime[n2]]; If[n[n2] == 0, n[ n2] = n1; If[n2 > nm, nm = n2]; If[n2 <= 201, ct++ ]; Print[Table[n[k], {k, 2, nm}]]]; n1++; p1 = Prime[n1]];
n=2: prime(2)+2*prime(2+1)=3+2*5=13 is prime, so a(2)=1; n=3: prime(3)+2*prime(3+1)=5+2*7=19 is prime, so a(2)=1; ... n=7: prime(7)+2*prime(7+1)=17+2*19=55 is not prime ... prime(7)+2*prime(7+4)=17+2*31=79 is prime, so a(7)=4;
a114263 n = head [m | m <- [1..n], a010051 (a000040 n + 2 * a000040 (n + m)) == 1] -- Reinhard Zumkeller, Oct 31 2013
Table[p1 = Prime[n1]; n2 = 1; p2 = Prime[n1 + n2]; While[cp = p1 + 2* p2; ! PrimeQ[cp], n2++; p2 = Prime[n1 + n2]]; n2, {n1, 2, 201}]
n=1: 2*prime[1]+3=2*2+3=7 is prime, so a(1)=3; n=2: 2*prime[2]+5=2*3+5=11 is prime, so a(2)=5; ... n=4: 2*prime[4]+3=2*7+3=17 is prime, so a(4)=17.
a114265 n = head [p | let (q:qs) = drop (n - 1) a000040_list, p <- qs, a010051 (2 * q + p) == 1] -- Reinhard Zumkeller, Oct 31 2013
Table[p1 = Prime[n1]; n2 = 1; p2 = Prime[n1 + n2]; While[cp = 2*p1 + p2; ! PrimeQ[cp], n2++; p2 = Prime[n1 + n2]]; p2, {n1, 1, 200}]
a(n)=forprime(p=prime(n)+1,,if(isprime(2*prime(n)+p),return(p))) vector(100,n,a(n)) \\ Derek Orr, Feb 11 2015
2*Prime[3]+Prime[3-1]=2*5+3=13 is prime, so n(1)=3; 2*Prime[4]+Prime[4-1]=2*7+5=19 is prime, not counted ... 2*Prime[8]+Prime[8-1]=2*19+17=55 is not prime 2*Prime[8]+Prime[8-2]=2*19+13=51 is not prime 2*Prime[8]+Prime[8-3]=2*19+11=49 is not prime ... 2*Prime[8]+Prime[8-5]=2*19+5=43 is prime, so n(5)=8;
Do[n[k] = 0, {k, 1, 2000}]; ct = 0; nm = 0; n2 = 0; n1 = 3; p1 = 5; While[ct < 200, n2 = 1; p2 = Prime[n1 - n2]; \ While[cp = 2*p1 + p2; ! PrimeQ[cp], n2++; p2 = Prime[n1 - n2]]; If[n[n2] == 0, n[ n2] = n1; If[n2 > nm, nm = n2]; If[n2 <= 200, ct++ ]; Print[Table[n[k], {k, 1, nm}]]]; n1++; p1 = Prime[n1]]
Comments