cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 41 results. Next

A251656 4-step Fibonacci sequence starting with 1,0,1,0.

Original entry on oeis.org

1, 0, 1, 0, 2, 3, 6, 11, 22, 42, 81, 156, 301, 580, 1118, 2155, 4154, 8007, 15434, 29750, 57345, 110536, 213065, 410696, 791642, 1525939, 2941342, 5669619, 10928542, 21065442, 40604945, 78268548, 150867477, 290806412, 560547382, 1080489819
Offset: 0

Views

Author

Arie Bos, Dec 06 2014

Keywords

Crossrefs

Other 4-step Fibonacci sequences are A000078, A000288, A001630, A001631, A001648, A073817, A100532, A251654, A251655, A251703, A251704, A251705.
Cf. A000336.

Programs

  • J
    NB. see A251655 for the program and apply it to 1,0,1,0.
  • Mathematica
    LinearRecurrence[Table[1, {4}], {1, 0, 1, 0}, 36] (* Michael De Vlieger, Dec 09 2014 *)

Formula

a(n+4) = a(n)+a(n+1)+a(n+2)+a(n+3).
G.f.: (-1+x+2*x^3)/(-1+x+x^2+x^3+x^4) . - R. J. Mathar, Mar 28 2025
a(n) = A000078(n+3)-A000078(n+2)-2*A000078(n). - R. J. Mathar, Mar 28 2025

A251703 4-step Fibonacci sequence starting with 1,1,0,0.

Original entry on oeis.org

1, 1, 0, 0, 2, 3, 5, 10, 20, 38, 73, 141, 272, 524, 1010, 1947, 3753, 7234, 13944, 26878, 51809, 99865, 192496, 371048, 715218, 1378627, 2657389, 5122282, 9873516, 19031814, 36685001, 70712613, 136302944, 262732372, 506432930, 976180859
Offset: 0

Views

Author

Arie Bos, Dec 07 2014

Keywords

Crossrefs

Other 4-step Fibonacci sequences are A000078, A000288, A001630, A001631, A001648, A073817, A100532, A251654, A251655, A251656, A251704, A251705.

Programs

  • J
    NB. see A251655 for the program and apply it to 1,1,0,0.
  • Mathematica
    LinearRecurrence[Table[1, {4}], {1, 1, 0, 0}, 36] (* Michael De Vlieger, Dec 09 2014 *)

Formula

a(n+4) = a(n) + a(n+1) + a(n+2) + a(n+3).
G.f.: (-1+2*x^2+2*x^3)/(-1+x+x^2+x^3+x^4) . - R. J. Mathar, Mar 28 2025
a(n) = A000078(n+3)-2*A000078(n+1)-2*A000078(n). - R. J. Mathar, Mar 28 2025

A104622 Indices of prime values of heptanacci-Lucas numbers A104621.

Original entry on oeis.org

0, 2, 3, 5, 7, 10, 17, 24, 25, 26, 28, 38, 40, 49, 62, 79, 89, 114, 140, 145, 182, 248, 353, 437, 654, 702, 784, 921, 931, 986, 1206, 2136, 2137, 3351, 5411, 13264, 13757, 16348, 27087, 27160
Offset: 1

Views

Author

Jonathan Vos Post, Mar 17 2005

Keywords

Comments

The 7th-order linear recurrence A104622 (heptanacci-Lucas numbers) is a generalization of the Lucas sequence A000032. T. D. Noe and I have noted that the heptanacci-Lucas numbers have many more primes than the corresponding heptanacci (see A104414) which he found has only the first 3 primes that I identified through the first 5000 values, whereas these heptanacci-Lucas numbers have 17 primes among the first 100 values. For semiprimes in heptanacci-Lucas numbers, see A104623.

Examples

			A104621(0) = 7,
A104621(2) = 3,
A104621(3) = 7,
A104621(5) = 31,
A104621(7) = 127,
A104621(10) = 983,
A104621(17) = 122401,
A104621(24) = 15231991.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 7; a[1] = 1; a[2] = 3; a[3] = 7; a[4] = 15; a[5] = 31; a[6] = 63; a[n_] := a[n] = a[n - 1] + a[n - 2] + a[n - 3] + a[n - 4] + a[n - 5] + a[n - 6] + a[n - 7]; Do[ If[ PrimeQ[ a[n]], Print[n]], {n, 5000}] (* Robert G. Wilson v, Mar 17 2005 *)
    Flatten[Position[LinearRecurrence[{1,1,1,1,1,1,1},{7,1,3,7,15,31,63},28000],?PrimeQ]]-1 (* _Harvey P. Dale, Jan 02 2016 *)

Formula

Prime values of the heptanacci-Lucas numbers, which are defined by: a(0) = 7, a(1) = 1, a(2) = 3, a(3) = 7, a(4) = 15, a(5) = 31, a(6) = 63, for n > 6: a(n) = a(n-1)+a(n-2)+a(n-3)+a(n-4)+a(n-5)+a(n-6)+a(n-7).

Extensions

More terms from T. D. Noe and Robert G. Wilson v, Mar 17 2005

A251654 4-step Fibonacci sequence starting with 0, 1, 1, 0.

Original entry on oeis.org

0, 1, 1, 0, 2, 4, 7, 13, 26, 50, 96, 185, 357, 688, 1326, 2556, 4927, 9497, 18306, 35286, 68016, 131105, 252713, 487120, 938954, 1809892, 3488679, 6724645, 12962170, 24985386, 48160880, 92833081, 178941517, 344920864, 664856342, 1281551804
Offset: 0

Views

Author

Arie Bos, Dec 06 2014

Keywords

Crossrefs

Other 4-step Fibonacci sequences are A000078, A000288, A001630, A001631, A001648, A073817, A100532, A251655, A251656, A251672, A251703, A251704, A251705.

Programs

  • J
    NB. see A251655 for the program and apply it to 0,1,1,0.
  • Mathematica
    LinearRecurrence[Table[1, {4}], {0, 1, 1, 0}, 36] (* Michael De Vlieger, Dec 09 2014 *)

Formula

a(n+4) = a(n) + a(n+1) + a(n+2) + a(n+3).
G.f.: x*(-1+2*x^2)/(-1+x+x^2+x^3+x^4). - R. J. Mathar, Mar 28 2025
a(n) = A000078(n+2)-2*A000078(n). - R. J. Mathar, Mar 28 2025

A251655 4-step Fibonacci sequence starting with 0, 1, 1, 1.

Original entry on oeis.org

0, 1, 1, 1, 3, 6, 11, 21, 41, 79, 152, 293, 565, 1089, 2099, 4046, 7799, 15033, 28977, 55855, 107664, 207529, 400025, 771073, 1486291, 2864918, 5522307, 10644589, 20518105, 39549919, 76234920, 146947533, 283250477, 545982849, 1052415779, 2028596638
Offset: 0

Views

Author

Arie Bos, Dec 06 2014

Keywords

Crossrefs

Other 4-step Fibonacci sequences are A000078, A000288, A001630, A001631, A001648, A073817, A100532, A251654, A251656, A251672, A251703, A251704, A251705.

Programs

  • J
    (see www.jsoftware.com) First construct the generating matrix
       [M=: (#.@}: + {:)\"1&.|: <:/~i.4
    1 1 1 1
    1 2 2 2
    2 3 4 4
    4 6 7 8
    Given that matrix, one can produce the first 4*250 numbers with
    , M(+/ . *)^:(i.250) 0 1 1 1x
  • Mathematica
    LinearRecurrence[Table[1, {4}], {0, 1, 1, 1}, 36] (* Michael De Vlieger, Dec 09 2014 *)

Formula

a(n+4) = a(n) + a(n+1) + a(n+2) + a(n+3).
G.f.: x*(x-1)*(1+x)/(-1+x+x^2+x^3+x^4) . - R. J. Mathar, Mar 28 2025
a(n) = A000078(n+2)-A000078(n). - R. J. Mathar, Mar 28 2025

A251704 4-step Fibonacci sequence starting with 1, 1, 0, 1.

Original entry on oeis.org

1, 1, 0, 1, 3, 5, 9, 18, 35, 67, 129, 249, 480, 925, 1783, 3437, 6625, 12770, 24615, 47447, 91457, 176289, 339808, 655001, 1262555, 2433653, 4691017, 9042226, 17429451, 33596347, 64759041, 124827065, 240611904, 463794357, 893992367, 1723225693
Offset: 0

Views

Author

Arie Bos, Dec 07 2014

Keywords

Crossrefs

Other 4-step Fibonacci sequences are A000078, A000288, A001630, A001631, A001648, A073817, A100532, A251654, A251655, A251656, A251703, A251705.

Programs

  • J
    NB. see A251655 for the program and apply it to 1,1,0,1.
  • Mathematica
    LinearRecurrence[Table[1, {4}], {1, 1, 0, 1}, 36] (* Michael De Vlieger, Dec 09 2014 *)

Formula

a(n+4) = a(n) + a(n+1) + a(n+2) + a(n+3).
G.f.: (1+x)*(x^2+x-1)/(-1+x+x^2+x^3+x^4) . - R. J. Mathar, Mar 28 2025
a(n) = A001630(n-2)+A001630(n-1), n>2. - R. J. Mathar, Mar 28 2025

A251705 4-step Fibonacci sequence starting with 1, 1, 1, 0.

Original entry on oeis.org

1, 1, 1, 0, 3, 5, 9, 17, 34, 65, 125, 241, 465, 896, 1727, 3329, 6417, 12369, 23842, 45957, 88585, 170753, 329137, 634432, 1222907, 2357229, 4543705, 8758273, 16882114, 32541321, 62725413, 120907121, 233055969, 449229824, 865918327, 1669111241
Offset: 0

Views

Author

Arie Bos, Dec 07 2014

Keywords

Crossrefs

Other 4-step Fibonacci sequences are A000078, A000288, A001630, A001631, A001648, A073817, A100532, A251654, A251655, A251656, A251703, A251704.

Programs

  • J
    NB. see A251655 for the program and apply it to 1,1,1,0.
  • Mathematica
    LinearRecurrence[Table[1, {4}], {1, 1, 1, 0}, 36] (* Michael De Vlieger, Dec 09 2014 *)

Formula

a(n+4) = a(n) + a(n+1) + a(n+2) + a(n+3).
G.f.: (-1+3*x^3+x^2)/(-1+x+x^2+x^3+x^4) . - R. J. Mathar, Mar 28 2025

A073937 a(n) = a(n-1) - a(n-2) + a(n-3) + a(n-4), a(0)=4, a(1)=1, a(2)=-1, a(3)=1.

Original entry on oeis.org

4, 1, -1, 1, 7, 6, -1, 1, 15, 19, 4, 1, 31, 53, 27, 6, 63, 137, 107, 39, 132, 337, 351, 185, 303, 806, 1039, 721, 791, 1915, 2884, 2481, 2303, 4621, 7683, 7846, 7087, 11545, 19987, 23375, 22020, 30177, 51519, 66737, 67415, 82374, 133215, 184993, 201567, 232163, 348804
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 13 2002

Keywords

Comments

From Kai Wang, Nov 03 2020: (Start)
Let f(x) = x^4 - x^3 - x^2 - x - 1 and {x1,x2,x3,x4} be the roots of f(x). Then a(n) = (x1*x2*x3)^n + (x1*x2*x4)^n + (x1*x3*x4)^n + (x2*x3*x4)^n.
Let g(y) = y^4 - y^3 + y^2 - y - 1 and {y1,y2,y3,y4} be the roots of g(y). Then a(n) = y1^n + y2^n + y3^n + y4^n. (End)

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(4-3*x+2*x^2-x^3)/(1-x+x^2-x^3-x^4), {x, 0, 50}], x]
    LinearRecurrence[{1,-1,1,1},{4,1,-1,1},60] (* Harvey P. Dale, Sep 05 2021 *)
  • PARI
    polsym(y^4 - y^3 + y^2 - y - 1, 55) \\ Joerg Arndt, Nov 07 2020

Formula

G.f.: (4 - 3*x + 2*x^2 - x^3)/(1 - x + x^2 - x^3 - x^4).
From Kai Wang, Nov 03 2020: (Start)
For n >= 1, a(n) = Sum_{j1,j2,j3,j4>=0; j1+2*j2+3*j3+4*j4=n} (-1)^j2*n*(j1+j2+j3+j4-1)!/(j1!*j2!*j3!*j4!).
For n > 1, a(n) = (-1)^n*(4*A100329(n+1) + 3*A100329(n) + 2*A100329(n-1) + A100329(n-2)). (End)
From Peter Bala, Jan 19 2023: (Start)
a(n) = (-1)^n*A074058(n).
a(n) = trace of M^n, where M is the 4 X 4 matrix [[0, 0, 0, -1], [-1, 0, 0, 1], [0, -1, 0, 1], [0, 0, -1, 1]].
The Gauss congruences hold: a(n*p^r) == a(n*p^(r-1)) (mod p^k) for positive integers n and r and all primes p. See Zarelua. (End)

A106277 Number of distinct zeros of x^4-x^3-x^2-x-1 mod prime(n).

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 1, 1, 1, 2, 0, 2, 2, 0, 1, 0, 1, 1, 1, 1, 2, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 4, 0, 1, 0, 2, 2, 2, 2, 4, 1, 1, 1, 0, 0, 1, 1, 2, 0, 0, 0, 1, 0, 0, 2, 1, 0, 1, 1, 0, 2, 2, 2, 0, 0, 2, 1, 0, 1, 2, 0, 0, 2, 0, 1, 0, 2, 1, 1, 2, 1, 2, 0, 1, 0, 1, 2, 0, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 1, 2, 1, 3, 0, 0
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

This polynomial is the characteristic polynomial of the Fibonacci and Lucas 4-step sequences, A000078 and A073817. Similar polynomials are treated in Serre's paper. The discriminant of the polynomial is -563 and 563 is the only prime for which the polynomial has 3 distinct zeros. The primes p yielding 4 distinct zeros, A106280, correspond to the periods of the sequences A000078(k) mod p and A073817(k) mod p having length less than p. The Lucas 4-step sequence mod p has one additional prime p for which the period is less than p: the discriminant 563. For this prime, the Fibonacci 4-step sequence mod p has a period of p(p-1).

Crossrefs

Cf. A106296 (period of the Lucas 4-step sequences mod prime(n)), A106283 (prime moduli for which the polynomial is irreducible).

Programs

  • Mathematica
    Table[p=Prime[n]; cnt=0; Do[If[Mod[x^4-x^3-x^2-x-1, p]==0, cnt++ ], {x, 0, p-1}]; cnt, {n, 150}]
  • Python
    from sympy.abc import x
    from sympy import Poly, prime
    def A106277(n): return len(Poly(x*(x*(x*(x-1)-1)-1)-1, x, modulus=prime(n)).ground_roots()) # Chai Wah Wu, Mar 29 2024

A192742 Number of matchings in the n-antiprism graph.

Original entry on oeis.org

3, 15, 51, 191, 708, 2631, 9775, 36319, 134943, 501380, 1862875, 6921503, 25716811, 95550687, 355018116, 1319068095, 4900991135, 18209608887, 67657713855, 251381908996, 934008268531, 3470303209839, 12893894812259, 47907203888767, 177998984624708, 661354367518327, 2457258957728079, 9129933787225743, 33922224882718431, 126037862684586116
Offset: 1

Views

Author

Eric W. Weisstein, Jul 09 2011

Keywords

Comments

Antiprism graphs have n >= 3; sequence extended via recurrence to start at n = 1

Crossrefs

Bisection of A073817.

Programs

  • Mathematica
    LinearRecurrence[{3, 3, -1, -1}, {3, 15, 51, 191}, 20]
    Table[RootSum[1 + # - 3 #^2 - 3 #^3 + #^4 &, #^n &], {n, 20}]
    CoefficientList[Series[(3 + 6 x - 3 x^2 - 4 x^3)/(1 - 3 x - 3 x^2 + x^3 + x^4), {x, 0, 20}], x]

Formula

a(n) = 3*a(n-1) + 3*a(n-2) - a(n-3) - a(n-4).
G.f.: -x*(-3-6*x+3*x^2+4*x^3)/(1-3*x-3*x^2+x^3+x^4).
a(n) = A073817(2*n). - Greg Dresden, Jan 27 2021
Previous Showing 21-30 of 41 results. Next