cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 43 results. Next

A231064 Coins left after packing X patterns into an n X n array of coins.

Original entry on oeis.org

4, 4, 11, 15, 16, 24, 24, 31, 35, 41, 44, 49, 51, 55, 56, 64, 69, 71, 75, 76, 84, 89, 91, 95, 96, 104, 109, 111, 115, 116, 124, 129, 131, 135, 136, 144, 149, 151, 155, 156, 164, 169, 171, 175, 176, 184, 189, 191, 195, 196, 204, 209, 211, 215, 216, 224, 229, 231, 235, 236, 244, 249, 251
Offset: 2

Views

Author

Kival Ngaokrajang, Nov 03 2013

Keywords

Comments

The X pattern (8c5s2 type) is a pattern in which 8 curves cover 5 coins, and is one of a total of 13 such distinct patterns that appear in a tightly-packed 3 X 3 square array of coins of identical size; each of the 8 curves is a circular arc lying along the edge of one of the 5 coins, and the 8 curves are joined end-to-end to form a continuous area.
a(n) is the total number of coins left (the coins out side X patterns) after packing X patterns into an n X n array of coins. The maximum number of X patterns that can be packed into an n X n array of coins is A231056 and voids left is A231065.
a(n) is also the total number of coins left after packing "+" patterns (8c5s1 type) into an n X n array of coins. See illustration in links.

Crossrefs

Cf. A008795, A230370 (3-curves); A074148, A227906, A229093, A229154 (4-curves); A001399, A230267, A230276 (5-curves); A229593, A228949, A229598, A002620, A230548, A230549, A230550 (6-curves).

Formula

Empirical g.f.: x^2*(5*x^15 -5*x^14 -5*x^12 +5*x^11 -5*x^10 +5*x^9 +4*x^5 +x^4 +4*x^3 +7*x^2 +4) / ((x -1)^2*(x^4 +x^3 +x^2 +x +1)). - Colin Barker, Nov 27 2013

A231065 Voids left after packing X patterns into an of n X n array of coins.

Original entry on oeis.org

1, 0, 5, 8, 9, 16, 17, 24, 29, 36, 41, 48, 53, 60, 65, 76, 85, 92, 101, 108, 121, 132, 141, 152, 161, 176, 189, 200, 213, 224, 241, 256, 269, 284, 297, 316, 333, 348, 365, 380, 401, 420, 437, 456, 473, 496, 517, 536, 557, 576, 601, 624, 645, 668, 689, 716, 741, 764, 789, 812, 841, 868
Offset: 2

Views

Author

Kival Ngaokrajang, Nov 03 2013

Keywords

Comments

The X pattern (8c5s2 type) is a pattern in which 8 curves cover 5 coins, and is one of a total of 13 such distinct patterns that appear in a tightly-packed 3 X 3 square array of coins of identical size; each of the 8 curves is a circular arc lying along the edge of one of the 5 coins, and the 8 curves are joined end-to-end to form a continuous area.
a(n) is the total number of voids (spaces among coins) left after packing X patterns into an n X n array of coins. The maximum number of X patterns that can be packed into an n X n array of coins is A231056 and coins left is A231064.
a(n) is also the total number of voids left after packing "+" patterns (8c5s1 type) into an n X n array of coins. See illustration in links.

Crossrefs

Cf. A008795, A230370 (3-curves); A074148, A227906, A229093, A229154 (4-curves); A001399, A230267, A230276 (5-curves); A229593, A228949, A229598, A002620, A230548, A230549, A230550 (6-curves).

Formula

Empirical g.f.: x^2*(4*x^16 -8*x^15 +4*x^14 -4*x^13 +8*x^12 -8*x^11 +8*x^10 -4*x^9 +4*x^6 -5*x^5 +2*x^4 +2*x^3 -6*x^2 +2*x -1) / ((x -1)^3*(x^4 +x^3 +x^2 +x +1)). - Colin Barker, Nov 27 2013

A237448 Square array T(row >= 1, col >= 1): The first row, row=1, T(1,col) = col = A000027. When row > col, T(row,col) = row, otherwise (when 1 < row <= col), T(row,col) = row-1.

Original entry on oeis.org

1, 2, 2, 3, 1, 3, 4, 1, 3, 4, 5, 1, 2, 4, 5, 6, 1, 2, 4, 5, 6, 7, 1, 2, 3, 5, 6, 7, 8, 1, 2, 3, 5, 6, 7, 8, 9, 1, 2, 3, 4, 6, 7, 8, 9, 10, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13
Offset: 1

Views

Author

Antti Karttunen, Feb 10 2014

Keywords

Comments

This is transpose of A237447, please see comments there.

Examples

			The top left 9 X 9 corner of this infinite square array:
  1 2 3 4 5 6 7 8 9
  2 1 1 1 1 1 1 1 1
  3 3 2 2 2 2 2 2 2
  4 4 4 3 3 3 3 3 3
  5 5 5 5 4 4 4 4 4
  6 6 6 6 6 5 5 5 5
  7 7 7 7 7 7 6 6 6
  8 8 8 8 8 8 8 7 7
  9 9 9 9 9 9 9 9 8
		

Crossrefs

Transpose: A237447.
The leftmost column and the topmost row: A000027. Second row: A054977. Central diagonal: A028310 (note the different starting offsets).
Antidiagonal sums: A074148.

Programs

Formula

As a one-dimensional sequence:
If A010054(n-1) = 1 [that is, if n is in A000124], then a(n) = A002024(n), otherwise, if A004736(n) < A002260(n), a(n) = A002260(n), and if A004736(n) >= A002260(n), a(n) = A002260(n)-1.
Equivalently, as a square array T:
When col < row, T(row,col) = row, for 1 < row <= col, T(row,col) = row-1, and for the first row T(1,col) = col = A000027(col).
Can be computed also as a transposed version of the infinite limit of the finite square arrays in sequence A237265: T(row,col) = A237265((A000330(max(row,col)-1)+1) + (max(row,col)*(col-1)) + (row-1)).

A082735 Product of n-th group of terms in A074147.

Original entry on oeis.org

1, 8, 105, 5760, 328185, 42577920, 5568833025, 1300252262400, 304513870485825, 111644006842368000, 40992233865440682825, 21695920874860629196800, 11492457771692770753505625, 8291067715225260172247040000
Offset: 1

Views

Author

Amarnath Murthy, Apr 14 2003

Keywords

Crossrefs

Programs

Formula

a(1) = 1, a(2n) = product of next 2n even numbers. a(2n+1) = product of next 2n+1 odd numbers.
a(n)=A006882[A074148(n)]/A006882[A074148(n-2)]. a(2n-1)=A062031(n). a(2n)=A062030(n). # R. J. Mathar, Jul 17 2007

Extensions

Corrected and extended by R. J. Mathar, Jul 17 2007

A082736 LCM of n-th group of terms in A074147.

Original entry on oeis.org

1, 4, 105, 120, 109395, 55440, 1856277675, 42325920, 966710699955, 7210803600, 303646176781042095, 43790142876480, 2432266195067253069525, 6338767304469600, 12793596869123737224933375, 659267412349963697280
Offset: 1

Views

Author

Amarnath Murthy, Apr 14 2003

Keywords

Crossrefs

Programs

Formula

a(1) = 1, a(2n) = LCM of next 2n even numbers. a(2n+1) = LCM of next 2n+1 odd numbers.

Extensions

More terms from R. J. Mathar, Jul 17 2007

A109225 Triangle read by rows: T(n,0) = T(n,n) = 1 and for 0 < k < n: T(n,k) = T(n-1,k-1) + 1 - T(n-1,k-1) mod 2 + T(n-1,k).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 7, 6, 1, 1, 5, 12, 13, 8, 1, 1, 6, 17, 26, 21, 10, 1, 1, 7, 24, 43, 48, 31, 12, 1, 1, 8, 31, 68, 91, 80, 43, 14, 1, 1, 9, 40, 99, 160, 171, 124, 57, 16, 1, 1, 10, 49, 140, 259, 332, 295, 182, 73, 18, 1, 1, 11, 60, 189, 400, 591, 628, 477
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 23 2005

Keywords

Comments

Row sums give A084172, the generalized Jacobsthal numbers;
T(n,1) = n for n>0;
T(n,2) = A074148(n) for n>1.

Crossrefs

Cf. A007318.

A236773 a(n) = n + floor( n^2/2 + n^3/3 ).

Original entry on oeis.org

0, 1, 6, 16, 33, 59, 96, 145, 210, 292, 393, 515, 660, 829, 1026, 1252, 1509, 1799, 2124, 2485, 2886, 3328, 3813, 4343, 4920, 5545, 6222, 6952, 7737, 8579, 9480, 10441, 11466, 12556, 13713, 14939, 16236, 17605, 19050, 20572, 22173, 23855, 25620, 27469
Offset: 0

Views

Author

Bruno Berselli, Feb 07 2014

Keywords

Comments

This sequence follows A074148 and A042965, A236771.
The prime terms are 59, 829, 14939, 35759, 93719, 132409, 155219, 290399, 414179, 487463, ... .
If a(k) is prime then k == 1, 5, 7 or 11 (mod 12).
Third differences: 1, 2, 2, 2, 1, 4 repeated (unsigned terms of A181982).
Fourth differences: 1, 0, 0, -1, 3, -3 repeated (see A131193).

Crossrefs

Cf. A074148: n+floor(n^2/2).
Cf. A042965: n+floor(1/2+n/3); A236771: n+floor(n/2+n^2/3).
Cf. A236772: floor(sum(i=1..n, n^i/i)).

Programs

  • Magma
    [n+Floor(n^2/2+n^3/3): n in [0..50]];
    
  • Magma
    I:=[0,1,6,16,33,59,96,145,210]; [n le 9 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3)+Self(n-6)-3*Self(n-7)+3*Self(n-8)-Self(n-9): n in [1..50]]; // Vincenzo Librandi, Feb 08 2014
    
  • Maple
    seq(n+floor(n^2/2+n^3/3),n=0..43); # Paolo P. Lava, Aug 24 2018
  • Mathematica
    Table[n + Floor[n^2/2 + n^3/3], {n, 0, 50}]
    CoefficientList[Series[x (1 + 3 x + x^2 + 2 x^3 + 2 x^4 + 2 x^5 + x^7)/((1 + x) (1 - x + x^2) (1 + x + x^2) (1 - x)^4), {x, 0, 50}], x] (* Vincenzo Librandi, Feb 08 2014 *)
  • PARI
    vector(60, n, n--; n+floor(n^2/2 +n^3/3)) \\ G. C. Greubel, Aug 12 2018

Formula

G.f.: x*(1+3*x+x^2+2*x^3+2*x^4+2*x^5+x^7) / ((1+x)*(1-x+x^2)*(1+x+x^2)*(1-x)^4).
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +a(n-6) -3*a(n-7) +3*a(n-8) -a(n-9).
Also, for h>=0:
a(6h) = 6*h*( 12*h^2 + 3*h + 1 ),
a(6h+1) = 72*h^3 + 54*h^2 + 18*h + 1,
a(6h+2) = 6*( 4*h + 1 )*( 3*h^2 + 3*h + 1 ),
a(6h+3) = 2*( 36*h^3 + 63*h^2 + 39*h + 8 ),
a(6h+4) = 3*( 24*h^3 + 54*h^2 + 42*h + 11 ),
a(6h+5) = 72*h^3 + 198*h^2 + 186*h + 59.

A333520 Triangle read by rows: T(n,k) is the number of self-avoiding paths of length 2*(n-1+k) connecting opposite corners in the n X n grid graph (0 <= k <= floor((n-1)^2/2), n >= 1).

Original entry on oeis.org

1, 2, 6, 4, 2, 20, 36, 48, 48, 32, 70, 224, 510, 956, 1586, 2224, 2106, 732, 104, 252, 1200, 3904, 10560, 25828, 58712, 121868, 217436, 300380, 280776, 170384, 61336, 10180, 924, 5940, 25186, 88084, 277706, 821480, 2309402, 6140040, 15130410, 33339900, 62692432, 96096244, 116826664, 110195700, 78154858, 39287872, 12396758, 1879252, 111712
Offset: 1

Views

Author

Seiichi Manyama, Mar 29 2020

Keywords

Examples

			T(3,1) = 4;
   S--*      S--*--*   S  *--*   S
      |            |   |  |  |   |
   *--*         *--*   *--*  *   *  *--*
   |            |            |   |  |  |
   *--*--E      *--E         E   *--*  E
Triangle starts:
=======================================================
n\k|   0     1     2      3      4 ...      8 ...   12
---|---------------------------------------------------
1  |   1;
2  |   2;
3  |   6,    4,    2;
4  |  20,   36,   48,    48,    32;
5  |  70,  224,  510,   956,  1586, ... , 104;
6  | 252, 1200, 3904, 10560, ................. , 10180;
		

Crossrefs

Row sums give A007764.
T(n,0) gives A000984(n-1).
T(n,1) gives A257888(n).
T(n,floor((n-1)^2/2)) gives A121788(n-1).
T(2*n-1,2*(n-1)^2) gives A001184(n-1).

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A333520(n):
        if n == 1: return [1]
        universe = tl.grid(n - 1, n - 1)
        GraphSet.set_universe(universe)
        start, goal = 1, n * n
        paths = GraphSet.paths(start, goal)
        return [paths.len(2 * (n - 1 + k)).len() for k in range((n - 1) ** 2 // 2 + 1)]
    print([i for n in range(1, 8) for i in A333520(n)])

A109857 Next 2*n - 1 odd numbers in decreasing order followed by next 2*n even numbers in decreasing order.

Original entry on oeis.org

1, 4, 2, 7, 5, 3, 12, 10, 8, 6, 17, 15, 13, 11, 9, 24, 22, 20, 18, 16, 14, 31, 29, 27, 25, 23, 21, 19, 40, 38, 36, 34, 32, 30, 28, 26, 49, 47, 45, 43, 41, 39, 37, 35, 33, 60, 58, 56, 54, 52, 50, 48, 46, 44, 42, 71, 69, 67, 65, 63, 61, 59, 57, 55, 53, 51, 84, 82, 80, 78, 76, 74
Offset: 1

Views

Author

Amarnath Murthy, Jul 08 2005

Keywords

Comments

This sequence is a permutation of the positive integers. - Werner Schulte, Jul 29 2023

Examples

			 1;
 4,  2;
 7,  5,  3;
12, 10,  8,  6;
17, 15, 13, 11,  9;
24, 22, 20, 18, 16, 14;
31, 29, 27, 25, 23, 21, 19;
40, 38, 36, 34, 32, 30, 28, 26;
		

Crossrefs

Cf. A074147 (row reversed), A074149 (row sums), A074148 (column 1), A001844, A061925 (main diagonal).

Programs

  • PARI
    T(n,k)=n*(n+1)/2+floor(n/2)-2*(k-1) \\ Werner Schulte, Jul 29 2023

Formula

From Werner Schulte, Jul 29 2023: (Start)
T(n, k) = n*(n+1)/2 + floor(n/2) - 2*(k-1) for 1 <= k <= n.
T(n, n) = (n^2-3*n+4)/2 + floor(n/2) for n > 0.
T(2*n-1, n) = n^2 + (n-1)^2 = A001844(n-1) for n > 0. (End)

Extensions

More terms from Joshua Zucker, May 05 2006

A120413 Largest even number strictly less than n^2.

Original entry on oeis.org

0, 2, 8, 14, 24, 34, 48, 62, 80, 98, 120, 142, 168, 194, 224, 254, 288, 322, 360, 398, 440, 482, 528, 574, 624, 674, 728, 782, 840, 898, 960, 1022, 1088, 1154, 1224, 1294, 1368, 1442, 1520, 1598, 1680, 1762, 1848, 1934, 2024, 2114, 2208, 2302, 2400, 2498, 2600
Offset: 1

Views

Author

Henry Bottomley, Jul 06 2006

Keywords

Comments

Longest non-intersecting route from (0, 0) to (n - 1, n - 1) staying in an (n - 1) X (n - 1) box (shortest route is length 2n A005843).

Programs

  • Maple
    seq(2*ceil(n^2/2)-2,n=1..50);
  • Mathematica
    Flatten[Table[{(2n - 1)^2 - 1, 4n^2 - 2}, {n, 25}]] (* Alonso del Arte, Apr 15 2016 *)
  • PARI
    lista(nn) = for(n=0, nn, print1((-1+(-1)^n+4*n+2*n^2)/2, ", ")); \\ Altug Alkan, Apr 15 2016

Formula

a(n) = 2*ceiling[n^2/2] - 2 = 2*A074148(n) = A085046(n) - 1.
From Colin Barker, Jul 29 2012: (Start)
a(n) = (-1 + (-1)^n + 4*n + 2*n^2)/2.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: 2*x*(1 + 2*x - x^2)/((1-x)^3*(1+x)). (End)
a(n) = n^2 - 2 for even n; a(n) = n^2 - 1 for odd n. -Dennis P. Walsh, Apr 15 2016

Extensions

Offset corrected by N. J. A. Sloane, Apr 15 2016
Previous Showing 31-40 of 43 results. Next