cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A117949 Index of pentagonal numbers whose sum of divisors is square.

Original entry on oeis.org

1, 4, 7, 12, 21, 23, 27, 31, 71, 79, 89, 151, 168, 199, 223, 232, 239, 263, 311, 324, 336, 345, 359, 390, 463, 479, 497, 540, 599, 743, 751, 823, 858, 863, 911, 991, 1031, 1063, 1103, 1151, 1302, 1303, 1343, 1399, 1471, 1540, 1583, 1687, 1759, 1802, 1823
Offset: 1

Views

Author

Jonathan Vos Post, Apr 04 2006

Keywords

Comments

n such that A117948(n) is in A000290.

Examples

			a(1) = 1 because sigma(1*(3*1-1)/2) = 1 = 1^2.
a(2) = 4 because sigma(4*(3*4-1)/2) = 36 = 6^2.
a(3) = 7 because sigma(7*(3*7-1)/2) = 144 = 12^2.
a(4) = 12 because sigma(12*(3*12-1)/2) = 576 = 24^2.
a(5) = 21 because sigma(21*(3*21-1)/2) = 1024 = 32^2.
a(6) = 23 because sigma(23*(3*23-1)/2) = 1296 = 36^2.
a(7) = 27 because sigma(27*(3*27-1)/2) = 3600 = 60^2.
a(8) = 31 because sigma(31*(3*31-1)/2) = 2304 = 48^2.
a(9) = 71 because sigma(71*(3*71-1)/2) = 11664 = 108^2.
		

Crossrefs

Programs

Extensions

More terms from Emeric Deutsch, Apr 06 2006
a(0) removed by Amiram Eldar, Aug 17 2019

A232355 Numbers k such that sigma(triangular(k)) = sigma(k)^2.

Original entry on oeis.org

1, 11, 695, 991, 2839, 3707, 9347, 10703, 12847, 27089, 42251, 56419, 74671, 115289, 168739, 191051, 219295, 233729, 280111, 300731, 326899, 353651, 430859, 611799, 642991, 661715, 1035827, 1116607, 1181579, 1234519, 1365491, 1485035, 1777099, 1854671, 1905875
Offset: 1

Views

Author

Alex Ratushnyak, Nov 22 2013

Keywords

Comments

Subsequence of A116990. - Michel Marcus, Jun 13 2015

Examples

			11 is in the sequence because sigma(11*12/2) = sigma(66) = 144 = 12^2 = sigma(11)^2.
		

Crossrefs

Cf. A000203 (sigma(n): sum of divisors of n), A000217 (triangular(n): = n*(n+1)/2).
Cf. A074285 (sigma(triangular(n))), A072861 (sigma(n)^2).
Cf. A116990 (indices of triangular numbers whose sum of divisors is square).

Programs

  • Magma
    [n: n in [1..7*10^5] | SumOfDivisors(n*(n+1) div 2) eq SumOfDivisors(n)^2]; // Vincenzo Librandi, Jun 13 2015
  • Mathematica
    Select[Range@1000000, DivisorSigma[1, #]^2==DivisorSigma[1, (# (# + 1)/2)] &] (* Vincenzo Librandi, Jun 13 2015 *)
  • PARI
    isok(n) = sigma(n)^2 == sigma(n*(n+1)/2); \\ Michel Marcus, Nov 23 2013
    

Extensions

More terms from Michel Marcus, Nov 23 2013

A262613 Sum of divisors of n-th generalized pentagonal number.

Original entry on oeis.org

1, 3, 6, 8, 28, 24, 36, 42, 48, 90, 72, 80, 144, 96, 168, 217, 182, 312, 180, 192, 372, 216, 576, 456, 280, 588, 336, 352, 864, 576, 720, 855, 558, 756, 702, 936, 1120, 600, 1080, 1116, 1024, 2016, 1008, 816, 1296, 1152, 2016, 2072, 1178, 1860, 1344, 1120, 3600
Offset: 1

Views

Author

Omar E. Pol, Nov 24 2015

Keywords

Comments

For a remarkable connection between the sum-of-divisors function (A000203) and the generalized pentagonal numbers (A001318) see A238442.

Crossrefs

Programs

  • Magma
    [DivisorSigma(1,(3*n^2+2*n+(n mod 2)*(2*n+1)) div 8): n in [1..70]]; // Vincenzo Librandi, Dec 21 2015
  • Mathematica
    DivisorSigma[1, Select[Accumulate[Range[200]]/3, IntegerQ]] (* G. C. Greubel, Jun 06 2017 *)
  • PARI
    a(n) = sigma((3*n^2 + 2*n + (n%2) * (2*n + 1)) / 8); \\ Michel Marcus, Dec 21 2015
    
  • Scheme
    (define (A262613 n) (A000203 (A001318 n))) ;; Scheme-program for A000203 given in that entry.
    ;; This uses memoization-macro definec:
    (definec (A001318 n) (if (zero? n) 0 (+ (if (even? n) (/ n 2) n) (A001318 (- n 1)))))
    ;; Antti Karttunen, Dec 20 2015
    

Formula

a(n) = A000203(A001318(n)).
Sum_{k=1..n} a(k) ~ (9/40) * n^3. - Amiram Eldar, Dec 14 2024

A325838 a(n) is the product of divisors of the n-th triangular number.

Original entry on oeis.org

1, 3, 36, 100, 225, 441, 21952, 10077696, 91125, 3025, 18974736, 37015056, 8281, 121550625, 42998169600000000, 342102016, 3581577, 5000211, 1303210000, 3782285936100000000, 2847396321, 64009, 442032795979776, 19683000000000000000000, 34328125, 15178486401
Offset: 1

Views

Author

Jaroslav Krizek, Sep 07 2019

Keywords

Examples

			The 5th triangular number is 15, whose divisors are {1, 3, 5, 15}; their product is 225.
		

Crossrefs

See A063440 and A074285 for number and sum of such divisors.

Programs

  • Magma
    [&*[d: d in Divisors(n * (n+1) div 2)] : n in [1..1000]];
    
  • Mathematica
    pd[n_] := n^(DivisorSigma[0, n]/2); t[n_] := n (n + 1)/2; pd /@ t /@ Range[26] (* Amiram Eldar, Sep 07 2019 *)
  • PARI
    a(n) = vecprod(divisors(n*(n+1)/2)); \\ Michel Marcus, Oct 14 2019
    
  • Python
    from math import isqrt
    from sympy import divisor_count
    def A325838(n): return (lambda m:(isqrt(m) if (c:=divisor_count(m)) & 1 else 1)*m**(c//2))(n*(n+1)//2) # Chai Wah Wu, Jun 25 2022

Formula

a(n) = A007955(A000217(n)).

A347155 Sum of divisors of nontriangular numbers.

Original entry on oeis.org

3, 7, 6, 8, 15, 13, 12, 28, 14, 24, 31, 18, 39, 20, 42, 36, 24, 60, 31, 42, 40, 30, 72, 32, 63, 48, 54, 48, 38, 60, 56, 90, 42, 96, 44, 84, 72, 48, 124, 57, 93, 72, 98, 54, 120, 120, 80, 90, 60, 168, 62, 96, 104, 127, 84, 68, 126, 96, 144, 72, 195, 74, 114, 124, 140
Offset: 1

Views

Author

Omar E. Pol, Aug 20 2021

Keywords

Comments

The characteristic shape of the symmetric representation of a(n) consists in that in the main diagonal of the diagram both Dyck paths have the same orientation, that is both Dyck paths have peaks or both Dyck paths have valleys.
So knowing this characteristic shape we can know if a number is a nontriangular number (or not) just by looking at the diagram, even ignoring the concept of nontriangular number.
Therefore we can see a geometric pattern of the distribution of the nontriangular numbers in the stepped pyramid described in A245092.
If both Dyck paths have peaks on the main diagonal then the related subsequence of nontriangular numbers A014132 is A317303.
If both Dyck paths have valleys on the main diagonal then the related subsequence of nontriangular numbers A014132 is A317304.

Examples

			a(6) = 13 because the sum of divisors of the 6th nontriangular (i.e., 9) is 1 + 3 + 9 = 13.
On the other we can see that in the main diagonal of the diagrams both Dyck paths have the same orientation, that is both Dyck paths have peaks or both Dyck paths have valleys as shown below.
Illustration of initial terms:
m(n) = A014132(n).
.
   n   m(n) a(n)   Diagram
.                    _   _ _   _ _ _   _ _ _ _   _ _ _ _ _   _ _ _ _ _ _
                   _| | | | | | | | | | | | | | | | | | | | | | | | | | |
   1    2    3    |_ _|_| | | | | | | | | | | | | | | | | | | | | | | | |
                   _ _|  _|_| | | | | | | | | | | | | | | | | | | | | | |
   2    4    7    |_ _ _|    _|_| | | | | | | | | | | | | | | | | | | | |
   3    5    6    |_ _ _|  _|  _ _|_| | | | | | | | | | | | | | | | | | |
                   _ _ _ _|  _| |  _ _|_| | | | | | | | | | | | | | | | |
   4    7    8    |_ _ _ _| |_ _|_|    _ _|_| | | | | | | | | | | | | | |
   5    8   15    |_ _ _ _ _|  _|     |  _ _ _|_| | | | | | | | | | | | |
   6    9   13    |_ _ _ _ _| |      _|_| |  _ _ _|_| | | | | | | | | | |
                   _ _ _ _ _ _|  _ _|    _| |    _ _ _|_| | | | | | | | |
   7   11   12    |_ _ _ _ _ _| |  _|  _|  _|   |  _ _ _ _|_| | | | | | |
   8   12   28    |_ _ _ _ _ _ _| |_ _|  _|  _ _| | |  _ _ _ _|_| | | | |
   9   13   14    |_ _ _ _ _ _ _| |  _ _|  _|    _| | |    _ _ _ _|_| | |
  10   14   24    |_ _ _ _ _ _ _ _| |     |     |  _|_|   |  _ _ _ _ _|_|
                   _ _ _ _ _ _ _ _| |  _ _|  _ _|_|       | | |
  11   16   31    |_ _ _ _ _ _ _ _ _| |  _ _|  _|      _ _|_| |
  12   17   18    |_ _ _ _ _ _ _ _ _| | |_ _ _|      _| |  _ _|
  13   18   39    |_ _ _ _ _ _ _ _ _ _| |  _ _|    _|  _|_|
  14   19   20    |_ _ _ _ _ _ _ _ _ _| | |       |_ _|
  15   20   42    |_ _ _ _ _ _ _ _ _ _ _| |  _ _ _|  _|
                   _ _ _ _ _ _ _ _ _ _ _| | |  _ _| |
  16   22   36    |_ _ _ _ _ _ _ _ _ _ _ _| | |_ _ _|
  17   23   24    |_ _ _ _ _ _ _ _ _ _ _ _| | |
  18   24   60    |_ _ _ _ _ _ _ _ _ _ _ _ _| |
  19   25   31    |_ _ _ _ _ _ _ _ _ _ _ _ _| |
  20   26   42    |_ _ _ _ _ _ _ _ _ _ _ _ _ _|
  21   27   40    |_ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
Column m gives the nontriangular numbers.
Also the diagrams have on the main diagonal the following property: diagram [1] has peaks, diagrams [2, 3] have valleys, diagrams [4, 5, 6] have peaks, diagrams [7, 8, 9, 10] have valleys, and so on.
a(n) is also the area (and the number of cells) of the n-th diagram.
For n = 3 the sum of the regions (or parts) of the third diagram is 3 + 3 = 6, so a(3) = 6.
For more information see A237593.
		

Crossrefs

Some sequences that gives sum of divisors: A000225 (of powers of 2), A008864 (of prime numbers), A065764 (of squares), A073255 (of composites), A074285 (of triangular numbers, also of generalized hexagonal numbers), A139256 (of perfect numbers), A175926 (of cubes), A224613 (of multiples of 6), A346865 (of hexagonal numbers), A346866 (of second hexagonal numbers), A346867 (of numbers with middle divisors), A346868 (of numbers with no middle divisors).

Programs

Formula

a(n) = A000203(A014132(n)).

A166162 Twin prime averages which are also the sum of the divisors of a triangular number.

Original entry on oeis.org

4, 12, 18, 72, 192, 270, 1488, 1872, 1482, 1872, 1152, 2268, 6552, 3672, 6552, 10890, 3528, 5280, 7560, 7488, 13680, 23040, 17388, 29760, 21600, 23040, 65520, 87120, 51480, 34848, 65268, 127680, 122400, 134400, 114660, 137088, 206640, 134400
Offset: 1

Views

Author

Keywords

Examples

			The triangular number A000217(3)= 6 has a sum of divisors 1+2+3+6 = 12 = A014574(3) which is also the average of the twin primes 11 and 13.
		

Crossrefs

Cf. A074285, A014574 [R. J. Mathar, Oct 14 2008]

Programs

  • Mathematica
    t[n_]:=n*(n+1)/2; f[n_]:=Plus@@Divisors[t[n]]; lst={};Do[p=f[n];If[PrimeQ[p-1]&&PrimeQ[p+1], AppendTo[lst,p]],{n,7!}];lst

Extensions

Definition and example rewritten by R. J. Mathar, Oct 14 2009

A275374 Numbers k that divide sigma(k*(k+1)/2).

Original entry on oeis.org

1, 2, 3, 7, 12, 15, 31, 56, 63, 127, 135, 168, 234, 240, 255, 260, 384, 504, 511, 720, 819, 896, 992, 1023, 1080, 1344, 1512, 1638, 2047, 2240, 2352, 3276, 3564, 3584, 3744, 3840, 4095, 4320, 4655, 7280, 7448, 8191, 9360, 10304, 12825, 12896, 13104, 14256, 14725, 15795, 16256
Offset: 1

Views

Author

Altug Alkan, Jul 25 2016

Keywords

Examples

			7 is a term because 7 divides sigma(28) = 56.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 17000, Divisible[DivisorSigma[1, # (# + 1)/2], #] &] (* Michael De Vlieger, Jul 25 2016 *)
  • PARI
    isok(n) = sigma(n*(n+1)/2) % n == 0
Previous Showing 11-17 of 17 results.