cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 80 results. Next

A143859 Ulam's spiral (WNW spoke).

Original entry on oeis.org

1, 18, 67, 148, 261, 406, 583, 792, 1033, 1306, 1611, 1948, 2317, 2718, 3151, 3616, 4113, 4642, 5203, 5796, 6421, 7078, 7767, 8488, 9241, 10026, 10843, 11692, 12573, 13486, 14431, 15408, 16417, 17458, 18531, 19636, 20773, 21942, 23143, 24376
Offset: 1

Views

Author

Keywords

Comments

Also sequence found by reading the segment (1, 18) together with the line from 18, in the direction 18, 67, ..., in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 05 2012

Programs

Formula

a(n) = 16*n^2 - 31*n + 16. - R. J. Mathar, Sep 08 2008
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(1)=1, a(2)=18, a(3)=67. - Harvey P. Dale, Mar 24 2012
G.f.: x*(1 + 15*x + 16*x^2)/(1-x)^3. - Colin Barker, Aug 03 2012
E.g.f.: -16 + (16 - 15*x + 16*x^2)*exp(x). - G. C. Greubel, Nov 09 2019

A143860 Ulam's spiral (NNW spoke).

Original entry on oeis.org

1, 16, 63, 142, 253, 396, 571, 778, 1017, 1288, 1591, 1926, 2293, 2692, 3123, 3586, 4081, 4608, 5167, 5758, 6381, 7036, 7723, 8442, 9193, 9976, 10791, 11638, 12517, 13428, 14371, 15346, 16353, 17392, 18463, 19566, 20701, 21868, 23067, 24298
Offset: 1

Views

Author

Keywords

Comments

Also, except for the first term, sequence found by reading the line from 16, in the direction 16, 63,... in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 05 2012

Programs

Formula

a(n) = 16*n^2 - 33*n + 18. - R. J. Mathar, Sep 08 2008
G.f. x*(1 + 13*x + 18*x^2)/(1-x)^3. - R. J. Mathar, Oct 31 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jul 10 2012
E.g.f.: -18 + (18 - 17*x + 16*x^2)*exp(x). - G. C. Greubel, Nov 09 2019

A157446 a(n) = 16*n^2 - n.

Original entry on oeis.org

15, 62, 141, 252, 395, 570, 777, 1016, 1287, 1590, 1925, 2292, 2691, 3122, 3585, 4080, 4607, 5166, 5757, 6380, 7035, 7722, 8441, 9192, 9975, 10790, 11637, 12516, 13427, 14370, 15345, 16352, 17391, 18462, 19565, 20700, 21867, 23066, 24297, 25560
Offset: 1

Views

Author

Vincenzo Librandi, Mar 01 2009

Keywords

Comments

The identity (2048*n^2 - 128*n + 1)^2 - (16*n^2 - n)*(512*n - 16)^2 = 1 can be written as A157448(n)^2 - a(n)*A157447(n)^2 = 1. - Vincenzo Librandi, Jan 26 2012
This is the case s=4 of the identity (8*n^2*s^4 - 8*n*s^2 + 1)^2 - (n^2*s^2 - n)*(8*n*s^3 - 4*s)^2 = 1. - Bruno Berselli, Jan 26 2012
Sequence found by reading the line from 15, in the direction 15, 62, ... in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 02 2012
The continued fraction expansion of sqrt(a(n)) is [4n-1; {1, 6, 1, 8n-2}]. For n=1, this collapses to [3; {1, 6}]. - Magus K. Chu, Sep 22 2022

Crossrefs

Programs

  • Magma
    I:=[15, 62, 141]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jan 26 2012
    
  • Mathematica
    LinearRecurrence[{3,-3,1},{15,62,141},40] (* Vincenzo Librandi, Jan 26 2012 *)
  • PARI
    for(n=1, 22, print1(16*n^2 - n", ")); \\ Vincenzo Librandi, Jan 26 2012

Formula

G.f.: x*(15 + 17*x)/(1-x)^3. - Vincenzo Librandi, Jan 26 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jan 26 2012

A143861 Ulam's spiral (NNE spoke).

Original entry on oeis.org

1, 14, 59, 136, 245, 386, 559, 764, 1001, 1270, 1571, 1904, 2269, 2666, 3095, 3556, 4049, 4574, 5131, 5720, 6341, 6994, 7679, 8396, 9145, 9926, 10739, 11584, 12461, 13370, 14311, 15284, 16289, 17326, 18395, 19496, 20629, 21794, 22991, 24220
Offset: 1

Views

Author

Keywords

Comments

Stanislaw M. Ulam was doodling during the presentation of a "long and very boring paper" at a scientific meeting in 1963. The spiral is its result. Note that conforming to trigonometric conventions, the spiral begins on the abscissa and rotates counterclockwise. Other spirals, orientations, direction of rotation and initial values exist, even in the OEIS.
Also sequence found by reading the segment (1, 14) together with the line from 14, in the direction 14, 59, ..., in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 05 2012

References

  • Chris K. Caldwell & G. L. Honaker, Jr., Prime Curios! The Dictionary of Prime Number Trivia, CreateSpace, Sept 2009, pp. 2-3.

Crossrefs

Programs

  • GAP
    List([1..40], n-> ((32*n-35)^2 +55)/64); # G. C. Greubel, Nov 09 2019
  • Magma
    [((32*n-35)^2 +55)/64: n in [1..40]]; // G. C. Greubel, Nov 09 2019
    
  • Maple
    seq( ((32*n-35)^2 +55)/64, n=1..40); # G. C. Greubel, Nov 09 2019
  • Mathematica
    (* From Robert G. Wilson v, Oct 29 2011 *)
    f[n_]:= 16n^2 -35n +20; Array[f, 40]
    LinearRecurrence[{3,-3,1}, {1,14,59}, 40]
    FoldList[#1 + #2 &, 1, 32Range@ 10 - 19] (* End *)
    ((32*Range[40] -35)^2 +55)/64 (* G. C. Greubel, Nov 09 2019 *)
  • PARI
    a(n)=16*n^2-35*n+20 \\ Charles R Greathouse IV, Oct 29 2011
    
  • Sage
    [((32*n-35)^2 +55)/64 for n in (1..40)] # G. C. Greubel, Nov 09 2019
    

Formula

a(n) = 16*n^2 - 35*n + 20. - R. J. Mathar, Sep 08 2008
G.f.: x*(1 + 11*x + 20*x^2)/(1-x)^3. - Colin Barker, Aug 03 2012
E.g.f.: -20 + (20 - 19*x + 16*x^2)*exp(x). - G. C. Greubel, Nov 09 2019

A158443 a(n) = 16*n^2 - 4.

Original entry on oeis.org

12, 60, 140, 252, 396, 572, 780, 1020, 1292, 1596, 1932, 2300, 2700, 3132, 3596, 4092, 4620, 5180, 5772, 6396, 7052, 7740, 8460, 9212, 9996, 10812, 11660, 12540, 13452, 14396, 15372, 16380, 17420, 18492, 19596, 20732, 21900, 23100, 24332, 25596, 26892, 28220, 29580
Offset: 1

Views

Author

Vincenzo Librandi, Mar 19 2009

Keywords

Comments

The identity (8*n^2 - 1)^2 - (16*n^2 - 4) *(2*n)^2 = 1 can be written as A157914(n)^2 - a(n)*A005843(n)^2 = 1.
Sequence found by reading the line from 12, in the direction 12, 60, ... in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 02 2012

Crossrefs

Programs

  • Magma
    I:=[12, 60, 140]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]];
    
  • Mathematica
    16Range[60]^2-4  (* Harvey P. Dale, Mar 18 2011 *)
  • PARI
    a(n) = 16*n^2 - 4.

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f: 4*x*(3+6*x-x^2)/(1-x)^3.
From Amiram Eldar, Mar 05 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/8.
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi-2)/16. (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: 4*(exp(x)*(4*x^2 + 4*x - 1) + 1).
a(n) = 4*A000466(n). (End)

A194801 Square array read by antidiagonals: T(n,k) = k*((n+1)*k-n+1)/2, k = 0, +- 1, +- 2,..., n >= 0.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 3, 0, 1, 2, 4, 1, 0, 1, 3, 5, 4, 6, 0, 1, 4, 6, 7, 9, 3, 0, 1, 5, 7, 10, 12, 9, 10, 0, 1, 6, 8, 13, 15, 15, 16, 6, 0, 1, 7, 9, 16, 18, 21, 22, 16, 15, 0, 1, 8, 10, 19, 21, 27, 28, 26, 25, 10, 0, 1, 9, 11, 22, 24, 33, 34, 36, 35
Offset: 0

Views

Author

Omar E. Pol, Feb 05 2012

Keywords

Comments

Note that a single formula gives several types of numbers. Row 0 lists 0 together the Molien series for 3-dimensional group [2,k]+ = 22k. Row 1 lists, except first zero, the squares repeated. If n >= 2, row n lists the generalized (n+3)-gonal numbers, for example: row 2 lists the generalized pentagonal numbers A001318. See some other examples in the cross-references section.

Examples

			Array begins:
(A008795): 0, 1,  0,  3,  1,  6,  3, 10,   6,  15,  10...
(A008794): 0, 1,  1,  4,  4,  9,  9, 16,  16,  25,  25...
A001318:   0, 1,  2,  5,  7, 12, 15, 22,  26,  35,  40...
A000217:   0, 1,  3,  6, 10, 15, 21, 28,  36,  45,  55...
A085787:   0, 1,  4,  7, 13, 18, 27, 34,  46,  55,  70...
A001082:   0, 1,  5,  8, 16, 21, 33, 40,  56,  65,  85...
A118277:   0, 1,  6,  9, 19, 24, 39, 46,  66,  75, 100...
A074377:   0, 1,  7, 10, 22, 27, 45, 52,  76,  85, 115...
A195160:   0, 1,  8, 11, 25, 30, 51, 58,  86,  95, 130...
A195162:   0, 1,  9, 12, 28, 33, 57, 64,  96, 105, 145...
A195313:   0, 1, 10, 13, 31, 36, 63, 70, 106, 115, 160...
A195818:   0, 1, 11, 14, 34, 39, 69, 76, 116, 125, 175...
		

Crossrefs

Rows (0-11): 0 together with A008795, (truncated A008794), A001318, A000217, A085787, A001082, A118277, A074377, A195160, A195162, A195313, A195818
Columns (0-9): A000004, A000012, A001477, (truncated A000027), A016777, (truncated A008585), A016945, (truncated A016957), A017341, (truncated A017329).
Cf. A139600.

A204675 a(n) = 16*n^2 + 2*n + 1.

Original entry on oeis.org

1, 19, 69, 151, 265, 411, 589, 799, 1041, 1315, 1621, 1959, 2329, 2731, 3165, 3631, 4129, 4659, 5221, 5815, 6441, 7099, 7789, 8511, 9265, 10051, 10869, 11719, 12601, 13515, 14461, 15439, 16449, 17491, 18565, 19671, 20809, 21979, 23181, 24415, 25681, 26979
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 18 2012

Keywords

Comments

Central terms of the triangle A033293.
Also sequence found by reading the line from 1, in the direction 1, 19, ... in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 02 2012

Crossrefs

Programs

  • Haskell
    a204675 n = 2 * n * (8 * n + 1) + 1
    
  • Magma
    I:=[1, 19, 69]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Mar 19 2012
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1+15*x)/(1-x)^3,{x,0,50}],x] (* or *) LinearRecurrence[{3, -3, 1}, {1, 19, 69}, 50] (* Vincenzo Librandi, Mar 19 2012 *)
  • PARI
    a(n)=16*n^2+2*n+1 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: (1+x)*(1+15*x)/(1-x)^3. - Bruno Berselli, Jan 18 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Wesley Ivan Hurt, Jun 09 2023
E.g.f.: exp(x)*(1 + 2*x*(9 + 8*x)). - Elmo R. Oliveira, Oct 18 2024

A274756 Values of n such that 2*n+1 and 6*n+1 are both triangular numbers.

Original entry on oeis.org

0, 945, 13167, 35578242, 495540990, 1338951572595, 18649189618605, 50390103447476100, 701843601611053692, 1896381151803363988917, 26413182084381205040235, 71368408216577696911440390, 994033693861758668873164410, 2685878672926303893761783662455
Offset: 1

Views

Author

Colin Barker, Jul 04 2016

Keywords

Comments

Intersection of A074377 and A274757.

Examples

			945 is in the sequence because 2*945+1 = 1891, 6*945+1 = 5671, and 1891 and 5671 are both triangular numbers.
		

Crossrefs

Cf. A124174 (2*n+1 and 9*n+1), A274579 (2*n+1 and 5*n+1), A274603 (2*n+1 and 3*n+1), A274680 (2*n+1 and 4*n+1).

Programs

  • PARI
    isok(n) = ispolygonal(2*n+1, 3) && ispolygonal(6*n+1, 3)
    
  • PARI
    concat(0, Vec(63*x^2*(15+194*x+15*x^2)/((1-x)*(1-194*x+x^2)*(1+194*x+x^2)) + O(x^20)))

Formula

G.f.: 63*x^2*(15+194*x+15*x^2) / ((1-x)*(1-194*x+x^2)*(1+194*x+x^2)).
a(n) = a(n-1)+37634*a(n-2)-37634*a(n-3)-a(n-4)+a(n-5). - Wesley Ivan Hurt, Apr 24 2021

A317300 Sequence obtained by taking the general formula for generalized k-gonal numbers: m*((k - 2)*m - k + 4)/2, where m = 0, +1, -1, +2, -2, +3, -3, ... and k >= 5. Here k = 0.

Original entry on oeis.org

0, 1, -3, 0, -8, -3, -15, -8, -24, -15, -35, -24, -48, -35, -63, -48, -80, -63, -99, -80, -120, -99, -143, -120, -168, -143, -195, -168, -224, -195, -255, -224, -288, -255, -323, -288, -360, -323, -399, -360, -440, -399, -483, -440, -528, -483, -575, -528, -624, -575, -675, -624, -728, -675, -783
Offset: 0

Views

Author

Omar E. Pol, Jul 29 2018

Keywords

Comments

Taking the same formula with k = 1 we have A317301.
Taking the same formula with k = 2 we have A001057 (canonical enumeration of integers).
Taking the same formula with k = 3 we have 0 together with A008795 (Molien series for 3-dimensional representation of dihedral group D_6 of order 6).
Taking the same formula with k = 4 we have A008794 (squares repeated) except the initial zero.
Taking the same formula with k >= 5 we have the generalized k-gonal numbers (see Crossrefs section).

Crossrefs

Row 0 of A303301.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • PARI
    concat(0, Vec(x*(1 - 4*x + x^2) / ((1 - x)^3*(1 + x)^2) + O(x^50))) \\ Colin Barker, Aug 01 2018

Formula

a(n) = -A174474(n+1).
From Colin Barker, Aug 01 2018: (Start)
G.f.: x*(1 - 4*x + x^2) / ((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
a(n) = -n*(n + 4) / 4 for n even.
a(n) = -(n - 3)*(n + 1) / 4 for n odd.
(End)

A317301 Sequence obtained by taking the general formula for generalized k-gonal numbers: m*((k - 2)*m - k + 4)/2, where m = 0, +1, -1, +2, -2, +3, -3, ... and k >= 5. Here k = 1.

Original entry on oeis.org

0, 1, -2, 1, -5, 0, -9, -2, -14, -5, -20, -9, -27, -14, -35, -20, -44, -27, -54, -35, -65, -44, -77, -54, -90, -65, -104, -77, -119, -90, -135, -104, -152, -119, -170, -135, -189, -152, -209, -170, -230, -189, -252, -209, -275, -230, -299, -252, -324, -275, -350, -299, -377, -324, -405, -350, -434
Offset: 0

Views

Author

Omar E. Pol, Jul 29 2018

Keywords

Comments

Taking the same formula with k = 0 we have A317300.
Taking the same formula with k = 2 we have A001057 (canonical enumeration of integers).
Taking the same formula with k = 3 we have 0 together with A008795 (Molien series for 3-dimensional representation of dihedral group D_6 of order 6).
Taking the same formula with k = 4 we have A008794 (squares repeated) except the initial zero.
Taking the same formula with k >= 5 we have the generalized k-gonal numbers (see Crossrefs section).

Crossrefs

Row 1 of A303301.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Magma
    /* By definition: */ k:=1; [0] cat [m*i*((k-2)*m*i-k+4)/2: i in [1,-1], m in [1..30]]; // Bruno Berselli, Jul 30 2018
    
  • Mathematica
    Table[(-2 n (n + 1) - 5 (2 n + 1) (-1)^n + 5)/16, {n, 0, 60}] (* Bruno Berselli, Jul 30 2018 *)
  • PARI
    concat(0, Vec(x*(1 - 3*x + x^2)/((1 + x)^2*(1 - x)^3) + O(x^50))) \\ Colin Barker, Aug 01 2018

Formula

From Bruno Berselli, Jul 30 2018: (Start)
O.g.f.: x*(1 - 3*x + x^2)/((1 + x)^2*(1 - x)^3).
E.g.f.: (-5*(1 + 2*x) + (5 - 2*x^2)*exp(2*x))*exp(-x)/16.
a(n) = a(-n+1) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = (-2*n*(n + 1) - 5*(2*n + 1)*(-1)^n + 5)/16. Therefore:
a(n) = -n*(n + 6)/8 for even n;
a(n) = -(n - 5)*(n + 1)/8 for odd n. Also:
a(n) = a(n-5) for odd n > 3.
2*(2*n - 1)*a(n) + 2*(2*n + 1)*a(n-1) + n*(n^2 - 3) = 0. (End)
Previous Showing 61-70 of 80 results. Next