cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A016283 a(n) = 6^n/8 - 4^(n-1) + 2^(n-3).

Original entry on oeis.org

0, 0, 1, 12, 100, 720, 4816, 30912, 193600, 1194240, 7296256, 44301312, 267904000, 1615810560, 9728413696, 58504691712, 351565004800, 2111537479680, 12677814747136, 76101248090112, 456744927232000
Offset: 0

Views

Author

Keywords

Comments

Number of rectangles that can be formed from the vertices of an n-dimensional cube. E.g., a(3)=12 because the three-dimensional cube has six faces plus six rectangles passing through the center of the cube. Cf. A064436: each rectangle on the cube provides an opportunity for a function not to be a linear threshold function, by alternating in value around the rectangle. - Matthew Cook, Jan 26 2004

Crossrefs

Third column of triangle A075497.
Cf. A025966.

Programs

  • Magma
    [6^n/8 - 4^(n-1) + 2^(n-3): n in [0..25]]; // Vincenzo Librandi, Apr 26 2011
  • Maple
    [seq(9/2*6^n-4*4^n+1/2*2^n,n=0..20)]; # Detlef Pauly (dettodet(AT)yahoo.de), Dec 04 2001
  • Mathematica
    CoefficientList[Series[x^2/((1 - 2 x) (1 - 4 x) (1 - 6 x)), {x, 0, 20}], x] (* Michael De Vlieger, Jan 31 2018 *)
  • Sage
    [((6^n - 2^n)/4-(4^n - 2^n)/2)/2 for n in range(0,21)] # Zerinvary Lajos, Jun 05 2009
    

Formula

a(n) = (2^n)*Stirling2(n+3, 3), n >= 0, with Stirling2(n, m) = A008277(n, m).
G.f.: x^2/((1-2*x)*(1-4*x)*(1-6*x)).
E.g.f.: (exp(2*x) - 8*exp(4*x) + 9*exp(6*x))/2!.
a(n) =((6^n - 2^n)/4 - (4^n - 2^n)/2)/2 , n >= 0. - Zerinvary Lajos, Jun 05 2009

A187075 A Galton triangle: T(n,k) = 2*k*T(n-1,k) + (2*k-1)*T(n-1,k-1).

Original entry on oeis.org

1, 2, 3, 4, 18, 15, 8, 84, 180, 105, 16, 360, 1500, 2100, 945, 32, 1488, 10800, 27300, 28350, 10395, 64, 6048, 72240, 294000, 529200, 436590, 135135, 128, 24384, 463680, 2857680, 7938000, 11060280, 7567560, 2027025, 256, 97920, 2904000, 26107200, 105099120, 220041360, 249729480, 145945800, 34459425
Offset: 1

Views

Author

Peter Bala, Mar 27 2011

Keywords

Comments

This is a companion triangle to A186695.
Let f(x) = (exp(2*x) + 1)^(-1/2); then the n-th derivative of f equals Sum_{k=1..n} (-1)^k*T(n,k)*(f(x))^(2*k+1). - Groux Roland, May 17 2011
Triangle T(n,k), 1 <= k <= n, given by (0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, ...) DELTA (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 20 2013

Examples

			Triangle begins
n\k.|...1.....2......3......4......5......6
===========================================
..1.|...1
..2.|...2.....3
..3.|...4....18.....15
..4.|...8....84....180....105
..5.|..16...360...1500...2100....945
..6.|..32..1488..10800..27300..28350..10395
..
Examples of recurrence relation:
T(4,3) = 6*T(3,3) + 5*T(3,2) = 6*15 + 5*18 = 180;
T(6,4) = 8*T(5,4) + 7*T(5,3) = 8*2100 + 7*1500 = 27300.
		

Crossrefs

Programs

  • Maple
    A187075 := proc(n, k) option remember; if k < 1 or k > n then 0; elif k = 1 then 2^(n-1); else 2*k*procname(n-1, k) + (2*k-1)*procname(n-1, k-1) ; end if; end proc:seq(seq(A187075(n,k),k = 1..n),n = 1..10);
  • Mathematica
    Flatten[Table[2^(n - 2*k)*Binomial[2 k, k]*k!*StirlingS2[n, k], {n, 10}, {k, 1, n}]] (* G. C. Greubel, Jun 17 2016 *)
  • Sage
    # uses[delehamdelta from A084938]
    # Adds a first column (1,0,0,0, ...).
    def A187075_triangle(n):
        return delehamdelta([(i+1)*int(is_even(i+1)) for i in (0..n)], [i+1 for i in (0..n)])
    A187075_triangle(4)  # Peter Luschny, Oct 20 2013

Formula

T(n,k) = 2^(n-2*k)*binomial(2k,k)*k!*Stirling2(n,k).
Recurrence relation T(n,k) = 2*k*T(n-1,k) + (2*k-1)*T(n-1,k-1) with boundary conditions T(1,1) = 1, T(1,k) = 0 for k >= 2.
G.f.: F(x,t) = 1/sqrt((1+x)-x*exp(2*t)) - 1 = Sum_{n >= 1} R(n,x)*t^n/n! = x*t + (2*x+3*x^2)*t^2/2! + (4*x+18*x^2+15*x^3)*t^3/3! + ....
The g.f. F(x,t) satisfies the partial differential equation dF/dt = 2*(x+x^2)*dF/dx + x*F.
The row polynomials R(n,x) satisfy the recursion R(n+1,x) = 2*(x+x^2)*R'(n,x) + x*R(n,x) where ' indicates differentiation with respect to x.
O.g.f. for column k: (2k-1)!!*x^k/Product_{m = 1..k} (1-2*m*x) (compare with A075497). T(n,k) = (2*k-1)!!*A075497(n,k).
The row polynomials R(n,x) = Sum_{k = 1..n} T(n,k)*x^k satisfy R(n,-x-1) = (-1)^n*(1+x)/x*P(n,x) where P(n,x) is the n-th row polynomial of A186695. We also have R(n,x/(1-x)) = (x/(1-x)^n)*Q(n-1,x) where Q(n,x) is the n-th row polynomial of A156919.
T(n,k) = 2^(n-k)*A211608(n,k). - Philippe Deléham, Oct 20 2013

A261275 Number of set partitions C_t(n) of {1,2,...,t} into at most n parts, with an even number of elements in each part distinguished by marks; triangle C_t(n), t>=0, 0<=n<=t, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 3, 0, 4, 10, 11, 0, 8, 36, 48, 49, 0, 16, 136, 236, 256, 257, 0, 32, 528, 1248, 1508, 1538, 1539, 0, 64, 2080, 6896, 9696, 10256, 10298, 10299, 0, 128, 8256, 39168, 66384, 74784, 75848, 75904, 75905, 0, 256, 32896, 226496, 475136, 586352, 607520, 609368, 609440, 609441
Offset: 0

Views

Author

Mark Wildon, Aug 13 2015

Keywords

Comments

C_t(n) is the number of sequences of t top-to-random shuffles that leave a deck of n cards invariant, if each shuffle is permitted to flip the orientation of the card it moves.
C_t(n) = where pi is the permutation character of the hyperoctahedral group BSym_n = C_2 wreath Sym_n given by its imprimitive action on a set of size 2n. This gives a combinatorial interpretation of C_t(n) using sequences of box moves on pairs of Young diagrams.
C_t(t) is the number of set partitions of a set of size t with an even number of elements in each part distinguished by marks.
C_t(n) = C_t(t) if n > t.

Examples

			Triangle starts:
  1;
  0,  1;
  0,  2,    3;
  0,  4,   10,   11;
  0,  8,   36,   48,   49;
  0, 16,  136,  236,  256,   257;
  0, 32,  528, 1248, 1508,  1538,  1539;
  0, 64, 2080, 6896, 9696, 10256, 10298, 10299;
  ...
		

Crossrefs

Columns n=0,1,2,3 give A000007, A000079, A007582, A233162 (proved for n=3 in reference above).
Main diagonal gives A004211.
Cf. A075497.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
           `if`(i<1, 0, add(x^j*multinomial(n, n-i*j, i$j)/j!*add(
            binomial(i, 2*k), k=0..i/2)^j*b(n-i*j, i-1), j=0..n/i))))
        end:
    T:= n-> (p-> seq(add(coeff(p, x, j), j=0..i), i=0..n))(b(n$2)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Aug 13 2015
  • Mathematica
    CC[t_, n_] := Sum[2^(t - m)*StirlingS2[t, m], {m, 0, n}];
    Table[CC[t, n], {t, 0, 12}, {n, 0, t}] // Flatten
    (* Second program: *)
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[x^j*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!*Sum[Binomial[i, 2*k], {k, 0, i/2}]^j*b[n - i*j, i - 1], {j, 0, n/i}]]];
    T[n_] := Function[p, Table[Sum[Coefficient[p, x, j], {j, 0, i}], {i, 0, n} ] ][b[n, n]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Nov 07 2017, after Alois P. Heinz *)

Formula

G.f.: sum(t>=0, n>=0, C_t(n)x^t/t!y^n) = exp(y/2 (exp(2*x)-1))/(1-y).
C_t(n) = Sum_{i=0..n} A075497(t,i).

A025966 Expansion of 1/((1-2x)(1-4x)(1-6x)(1-8x)).

Original entry on oeis.org

1, 20, 260, 2800, 27216, 248640, 2182720, 18656000, 156544256, 1296655360, 10641146880, 86744985600, 703688298496, 5688011079680, 45855653642240, 368956766617600, 2964331947687936, 23790756829593600
Offset: 0

Views

Author

Keywords

Crossrefs

Fourth column of triangle A075497.

Programs

  • Mathematica
    CoefficientList[Series[1/((1-2x)(1-4x)(1-6x)(1-8x)),{x,0,40}],x] (* Harvey P. Dale, Apr 13 2019 *)
  • PARI
    Vec(1/((1-2*x)*(1-4*x)*(1-6*x)*(1-8*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

Formula

a(n) = (2^n)*stirling2(n+4, 4), n>=0, with stirling2(n, m)=A008277(n, m).
a(n) = (-2^n+24*4^n-81*6^n+64*8^n)/3!.
G.f.: 1/((1-2*x)*(1-4*x)*(1-6*x)*(1-8*x)).
E.g.f.: (-exp(2*x)+24*exp(4*x)-81*exp(6*x)+64*exp(8*x))/3!.

A298213 Triangle read by rows, expansion of exp(x*exp(z)*tan(z)).

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 5, 6, 1, 0, 12, 32, 12, 1, 0, 41, 160, 110, 20, 1, 0, 142, 856, 900, 280, 30, 1, 0, 685, 4816, 7231, 3360, 595, 42, 1, 0, 3192, 29952, 58632, 37856, 9800, 1120, 56, 1, 0, 19921, 199680, 493100, 416640, 147126, 24192, 1932, 72, 1
Offset: 0

Views

Author

Peter Luschny, Jan 15 2018

Keywords

Examples

			Triangle starts:
0: 1;
1: 0,    1;
2: 0,    2,     1;
3: 0,    5,     6,     1;
4: 0,   12,    32,    12,     1;
5: 0,   41,   160,   110,    20,    1;
6: 0,  142,   856,   900,   280,   30,    1;
7: 0,  685,  4816,  7231,  3360,  595,   42,  1;
8: 0, 3192, 29952, 58632, 37856, 9800, 1120, 56, 1;
		

Crossrefs

T(n,1) = A009739(n), T(n,n) = A002378(n-1).
Row sums are A009248.
Cf. A075497.

Programs

  • Maple
    gf := exp(x*exp(z)*tan(z)):
    X := n -> series(gf, z, n+2):
    Z := n -> n!*expand(simplify(coeff(X(n), z, n))):
    A298213_row := n -> op(PolynomialTools:-CoefficientList(Z(n), x)):
    seq(A298213_row(n), n=0..8);
Previous Showing 11-15 of 15 results.