A016283
a(n) = 6^n/8 - 4^(n-1) + 2^(n-3).
Original entry on oeis.org
0, 0, 1, 12, 100, 720, 4816, 30912, 193600, 1194240, 7296256, 44301312, 267904000, 1615810560, 9728413696, 58504691712, 351565004800, 2111537479680, 12677814747136, 76101248090112, 456744927232000
Offset: 0
-
[6^n/8 - 4^(n-1) + 2^(n-3): n in [0..25]]; // Vincenzo Librandi, Apr 26 2011
-
[seq(9/2*6^n-4*4^n+1/2*2^n,n=0..20)]; # Detlef Pauly (dettodet(AT)yahoo.de), Dec 04 2001
-
CoefficientList[Series[x^2/((1 - 2 x) (1 - 4 x) (1 - 6 x)), {x, 0, 20}], x] (* Michael De Vlieger, Jan 31 2018 *)
-
[((6^n - 2^n)/4-(4^n - 2^n)/2)/2 for n in range(0,21)] # Zerinvary Lajos, Jun 05 2009
A187075
A Galton triangle: T(n,k) = 2*k*T(n-1,k) + (2*k-1)*T(n-1,k-1).
Original entry on oeis.org
1, 2, 3, 4, 18, 15, 8, 84, 180, 105, 16, 360, 1500, 2100, 945, 32, 1488, 10800, 27300, 28350, 10395, 64, 6048, 72240, 294000, 529200, 436590, 135135, 128, 24384, 463680, 2857680, 7938000, 11060280, 7567560, 2027025, 256, 97920, 2904000, 26107200, 105099120, 220041360, 249729480, 145945800, 34459425
Offset: 1
Triangle begins
n\k.|...1.....2......3......4......5......6
===========================================
..1.|...1
..2.|...2.....3
..3.|...4....18.....15
..4.|...8....84....180....105
..5.|..16...360...1500...2100....945
..6.|..32..1488..10800..27300..28350..10395
..
Examples of recurrence relation:
T(4,3) = 6*T(3,3) + 5*T(3,2) = 6*15 + 5*18 = 180;
T(6,4) = 8*T(5,4) + 7*T(5,3) = 8*2100 + 7*1500 = 27300.
-
A187075 := proc(n, k) option remember; if k < 1 or k > n then 0; elif k = 1 then 2^(n-1); else 2*k*procname(n-1, k) + (2*k-1)*procname(n-1, k-1) ; end if; end proc:seq(seq(A187075(n,k),k = 1..n),n = 1..10);
-
Flatten[Table[2^(n - 2*k)*Binomial[2 k, k]*k!*StirlingS2[n, k], {n, 10}, {k, 1, n}]] (* G. C. Greubel, Jun 17 2016 *)
-
# uses[delehamdelta from A084938]
# Adds a first column (1,0,0,0, ...).
def A187075_triangle(n):
return delehamdelta([(i+1)*int(is_even(i+1)) for i in (0..n)], [i+1 for i in (0..n)])
A187075_triangle(4) # Peter Luschny, Oct 20 2013
A261275
Number of set partitions C_t(n) of {1,2,...,t} into at most n parts, with an even number of elements in each part distinguished by marks; triangle C_t(n), t>=0, 0<=n<=t, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 2, 3, 0, 4, 10, 11, 0, 8, 36, 48, 49, 0, 16, 136, 236, 256, 257, 0, 32, 528, 1248, 1508, 1538, 1539, 0, 64, 2080, 6896, 9696, 10256, 10298, 10299, 0, 128, 8256, 39168, 66384, 74784, 75848, 75904, 75905, 0, 256, 32896, 226496, 475136, 586352, 607520, 609368, 609440, 609441
Offset: 0
Triangle starts:
1;
0, 1;
0, 2, 3;
0, 4, 10, 11;
0, 8, 36, 48, 49;
0, 16, 136, 236, 256, 257;
0, 32, 528, 1248, 1508, 1538, 1539;
0, 64, 2080, 6896, 9696, 10256, 10298, 10299;
...
-
with(combinat):
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add(x^j*multinomial(n, n-i*j, i$j)/j!*add(
binomial(i, 2*k), k=0..i/2)^j*b(n-i*j, i-1), j=0..n/i))))
end:
T:= n-> (p-> seq(add(coeff(p, x, j), j=0..i), i=0..n))(b(n$2)):
seq(T(n), n=0..12); # Alois P. Heinz, Aug 13 2015
-
CC[t_, n_] := Sum[2^(t - m)*StirlingS2[t, m], {m, 0, n}];
Table[CC[t, n], {t, 0, 12}, {n, 0, t}] // Flatten
(* Second program: *)
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[x^j*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!*Sum[Binomial[i, 2*k], {k, 0, i/2}]^j*b[n - i*j, i - 1], {j, 0, n/i}]]];
T[n_] := Function[p, Table[Sum[Coefficient[p, x, j], {j, 0, i}], {i, 0, n} ] ][b[n, n]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Nov 07 2017, after Alois P. Heinz *)
A025966
Expansion of 1/((1-2x)(1-4x)(1-6x)(1-8x)).
Original entry on oeis.org
1, 20, 260, 2800, 27216, 248640, 2182720, 18656000, 156544256, 1296655360, 10641146880, 86744985600, 703688298496, 5688011079680, 45855653642240, 368956766617600, 2964331947687936, 23790756829593600
Offset: 0
-
CoefficientList[Series[1/((1-2x)(1-4x)(1-6x)(1-8x)),{x,0,40}],x] (* Harvey P. Dale, Apr 13 2019 *)
-
Vec(1/((1-2*x)*(1-4*x)*(1-6*x)*(1-8*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
A298213
Triangle read by rows, expansion of exp(x*exp(z)*tan(z)).
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 5, 6, 1, 0, 12, 32, 12, 1, 0, 41, 160, 110, 20, 1, 0, 142, 856, 900, 280, 30, 1, 0, 685, 4816, 7231, 3360, 595, 42, 1, 0, 3192, 29952, 58632, 37856, 9800, 1120, 56, 1, 0, 19921, 199680, 493100, 416640, 147126, 24192, 1932, 72, 1
Offset: 0
Triangle starts:
0: 1;
1: 0, 1;
2: 0, 2, 1;
3: 0, 5, 6, 1;
4: 0, 12, 32, 12, 1;
5: 0, 41, 160, 110, 20, 1;
6: 0, 142, 856, 900, 280, 30, 1;
7: 0, 685, 4816, 7231, 3360, 595, 42, 1;
8: 0, 3192, 29952, 58632, 37856, 9800, 1120, 56, 1;
-
gf := exp(x*exp(z)*tan(z)):
X := n -> series(gf, z, n+2):
Z := n -> n!*expand(simplify(coeff(X(n), z, n))):
A298213_row := n -> op(PolynomialTools:-CoefficientList(Z(n), x)):
seq(A298213_row(n), n=0..8);
Comments