A075501
Stirling2 triangle with scaled diagonals (powers of 6).
Original entry on oeis.org
1, 6, 1, 36, 18, 1, 216, 252, 36, 1, 1296, 3240, 900, 60, 1, 7776, 40176, 19440, 2340, 90, 1, 46656, 489888, 390096, 75600, 5040, 126, 1, 279936, 5925312, 7511616, 2204496, 226800, 9576, 168, 1, 1679616, 71383680
Offset: 1
[1]; [6,1]; [36,18,1]; ...; p(3,x) = x(36 + 18*x + x^2).
From _Andrew Howroyd_, Mar 25 2017: (Start)
Triangle starts
* 1
* 6 1
* 36 18 1
* 216 252 36 1
* 1296 3240 900 60 1
* 7776 40176 19440 2340 90 1
* 46656 489888 390096 75600 5040 126 1
* 279936 5925312 7511616 2204496 226800 9576 168 1
(End)
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> 6^n, 9); # Peter Luschny, Jan 28 2016
-
Flatten[Table[6^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 10;
M = BellMatrix[6^#&, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
-
for(n=1, 11, for(m=1, n, print1(6^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
A075503
Stirling2 triangle with scaled diagonals (powers of 8).
Original entry on oeis.org
1, 8, 1, 64, 24, 1, 512, 448, 48, 1, 4096, 7680, 1600, 80, 1, 32768, 126976, 46080, 4160, 120, 1, 262144, 2064384, 1232896, 179200, 8960, 168, 1, 2097152, 33292288, 31653888, 6967296, 537600, 17024, 224, 1
Offset: 1
[1]; [8,1]; [64,24,1]; ...; p(3,x) = x(64 + 24*x + x^2).
From _Andrew Howroyd_, Mar 25 2017: (Start)
Triangle starts
* 1
* 8 1
* 64 24 1
* 512 448 48 1
* 4096 7680 1600 80 1
* 32768 126976 46080 4160 120 1
* 262144 2064384 1232896 179200 8960 168 1
* 2097152 33292288 31653888 6967296 537600 17024 224 1
(End)
-
Flatten[Table[8^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
-
for(n=1, 11, for(m=1, n, print1(8^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
Original entry on oeis.org
1, 30, 625, 11250, 188125, 3018750, 47265625, 728906250, 11133203125, 168996093750, 2554931640625, 38523925781250, 579858642578125, 8717878417968750, 130968170166015625, 1966522521972656250, 29517837677001953125, 442967564392089843750, 6646513462066650390625
Offset: 0
-
LinearRecurrence[{30,-275,750},{1,30,625},30] (* Harvey P. Dale, Oct 06 2017 *)
-
Vec(1/((1-5*x)*(1-10*x)*(1-15*x)) + O(x^30)) \\ Colin Barker, Dec 11 2015
Original entry on oeis.org
1, 45, 1260, 28350, 563031, 10333575, 179866170, 3016747800, 49263275061, 788796913905, 12445575859080, 194186867360850, 3004103990159091, 46168557763591035, 705914973500103990, 10750288516418083500
Offset: 0
Original entry on oeis.org
1, 50, 1625, 43750, 1063125, 24281250, 532890625, 11386718750, 238867578125, 4946347656250, 101481884765625, 2068161621093750, 41943091064453125, 847579699707031250, 17082562164306640625, 343617765808105468750, 6901873153839111328125
Offset: 0
-
Table[5^n*(-1 + 3*2^(3+n) + 2^(6+2*n) - 3^(4+n))/6, {n, 0, 20}] (* Vaclav Kotesovec, Dec 12 2015 *)
-
Vec(1/((1-5*x)*(1-10*x)*(1-15*x)*(1-20*x)) + O(x^30)) \\ Colin Barker, Dec 11 2015
A258773
Triangle read by rows, T(n,k) = (-1)^(n-k)*C(n,k)*k^n, for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, -2, 4, 0, 3, -24, 27, 0, -4, 96, -324, 256, 0, 5, -320, 2430, -5120, 3125, 0, -6, 960, -14580, 61440, -93750, 46656, 0, 7, -2688, 76545, -573440, 1640625, -1959552, 823543, 0, -8, 7168, -367416, 4587520, -21875000, 47029248, -46118408, 16777216
Offset: 0
Triangle begins:
[1]
[0, 1]
[0, -2, 4]
[0, 3, -24, 27]
[0, -4, 96, -324, 256]
[0, 5, -320, 2430, -5120, 3125]
[0, -6, 960, -14580, 61440, -93750, 46656]
[0, 7, -2688, 76545, -573440, 1640625, -1959552, 823543]
-
seq(seq((-1)^(n-k)*binomial(n, k)*k^n, k=0..n), n=0..8);
T_row := proc(n) (-1)^n*(1-exp(x))^n/n!; diff(%,[x$n]); subs(exp(x)=t, n!*expand(%,x)); CoefficientList(%,t) end: seq(print(T_row(n)), n=0..7);
-
Flatten@Table[(-1)^(n - k) Binomial[n, k] k^n, {n, 0 , 10}, {k, 0, n}] (* G. C. Greubel, Dec 17 2015 *)
A075505
Stirling2 triangle with scaled diagonals (powers of 10).
Original entry on oeis.org
1, 10, 1, 100, 30, 1, 1000, 700, 60, 1, 10000, 15000, 2500, 100, 1, 100000, 310000, 90000, 6500, 150, 1, 1000000, 6300000, 3010000, 350000, 14000, 210, 1, 10000000, 127000000, 96600000, 17010000, 1050000, 26600, 280, 1
Offset: 1
[1]; [10,1]; [100,30,1]; ...; p(3,x) = x(100 + 30*x + x^2).
From _Andrew Howroyd_, Mar 25 2017: (Start)
Triangle starts
* 1
* 10 1
* 100 30 1
* 1000 700 60 1
* 10000 15000 2500 100 1
* 100000 310000 90000 6500 150 1
* 1000000 6300000 3010000 350000 14000 210 1
* 10000000 127000000 96600000 17010000 1050000 26600 280 1
(End)
-
Flatten[Table[10^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
-
for(n=1, 11, for(m=1, n, print1(10^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
Original entry on oeis.org
1, 30, 560, 8400, 111216, 1360800, 15790720, 176563200, 1922176256, 20518417920, 215825326080, 2244998246400, 23153670762496, 237224718704640, 2418102840688640, 24549985173504000, 248464183682727936
Offset: 0
Original entry on oeis.org
1, 63, 2394, 71442, 1848987, 43615341, 964942308, 20385709344, 416206043253, 8280505692459, 161494678323342, 3101091077181006, 58823743379417199, 1104995938593100617, 20595841868175915096
Offset: 0
Original entry on oeis.org
1, 75, 3500, 131250, 4344375, 132890625, 3855156250, 107765625000, 2933008203125, 78271552734375, 2058270703125000, 53524929199218750, 1380066321044921875, 35349237725830078125, 900813505310058593750, 22863955398559570312500, 578500758117828369140625
Offset: 0
-
Table[5^n*(1 - 2^(n+6) + 2*3^(n+5) - 4^(n+5) + 5^(n+4))/24, {n, 0, 20}] (* Vaclav Kotesovec, Dec 12 2015 *)
-
Vec(1/((1-5*x)*(1-10*x)*(1-15*x)*(1-20*x)*(1-25*x)) + O(x^30)) \\ Colin Barker, Dec 12 2015
Comments