A386449
G.f. A(x) satisfies A(x) = 1/(1 - x - x^4*A'''(x)).
Original entry on oeis.org
1, 1, 1, 1, 7, 181, 11215, 1368049, 290015209, 98023774645, 49599740115757, 35810914359761065, 35524377449180431975, 46963191178201310535625, 80682726920407341929523811, 176372394085267937467487988481, 481849299958664384125278899595601, 1619977170089211596368385150640702601
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, sum(k=1, 3, stirling(3, k, 1)*j^k)*v[j+1]*v[i-j])); v;
A386450
G.f. A(x) satisfies A(x) = 1/(1 - x - x^5*A''''(x)).
Original entry on oeis.org
1, 1, 1, 1, 1, 25, 3049, 1103713, 929323297, 1563120681841, 4730002253928145, 23848669801185169825, 188929157434986723256801, 2244856224793842495701519113, 38526222340982767558002054899641, 925631015719595748793089592291450945, 30325523298479173582153602405524578371265
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, sum(k=1, 4, stirling(4, k, 1)*j^k)*v[j+1]*v[i-j])); v;
A386451
G.f. A(x) satisfies A(x) = 1/(1 - x - x^6*A'''''(x)).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 121, 87361, 220324321, 1481019998401, 22395984195495601, 677299352559157967041, 37550830682188851813205921, 3568906049019293501471580099841, 551188987985086896272084982413188201, 132418744847944340085178947237195978556801, 47718683730343729293790168893699493431209021761
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, sum(k=1, 5, stirling(5, k, 1)*j^k)*v[j+1]*v[i-j])); v;
A386453
a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} binomial(k+2,3) * a(k) * a(n-1-k).
Original entry on oeis.org
1, 1, 2, 11, 131, 2888, 107027, 6212005, 534389458, 65203760863, 10889677250198, 2417582805875622, 696275799766601842, 254839529849806176727, 116462397939843834894367, 65452132793842930368844779, 44638474752168615525812508053, 36514339485766910607857620043816
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, binomial(j+2, 3)*v[j+1]*v[i-j])); v;
A386454
a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} binomial(k+3,4) * a(k) * a(n-1-k).
Original entry on oeis.org
1, 1, 2, 13, 220, 8148, 586948, 75141039, 15930666825, 5289069956220, 2628685323745449, 1884772989271329869, 1890430039448133854031, 2584219798288871040676608, 4708450397910844142927823544, 11215531466814325127916787062534, 34341962107081618846057340207455738
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, binomial(j+3, 4)*v[j+1]*v[i-j])); v;
A386455
a(0) = 1; a(n) = a(n-1) + Sum_{k=0..n-1} binomial(k+4,5) * a(k) * a(n-1-k).
Original entry on oeis.org
1, 1, 2, 15, 344, 19962, 2555592, 649147331, 301207446317, 239159429472132, 308276821981867349, 617786997525975886618, 1856450241316927094671750, 8112688179283378712969957414, 50217541700003149682333160103969, 430364340522944093019900101527085125
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=v[i]+sum(j=0, i-1, binomial(j+4, 5)*v[j+1]*v[i-j])); v;
A091063
Triangle, read by rows, such that the initial terms of the binomial transform of the n-th row forms the n-th row of triangle A059438 transposed (permutations of [1..n] with k components).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 7, 0, 1, 4, 9, 18, 34, 0, 1, 5, 14, 34, 86, 206, 0, 1, 6, 20, 56, 162, 508, 1476, 0, 1, 7, 27, 85, 269, 939, 3549, 12123, 0, 1, 8, 35, 122, 415, 1540, 6413, 28498, 111866, 0, 1, 9, 44, 168, 609, 2361, 10314, 50382, 257922, 1143554, 0, 1
Offset: 0
Rows begin:
{1},
{1,0},
{1,1,0},
{1,2,2,0},
{1,3,5,7,0},
{1,4,9,18,34,0},
{1,5,14,34,86,206,0},
{1,6,20,56,162,508,1476,0},
{1,7,27,85,269,939,3549,12123,0},...
Initial terms of the binomial transform of each row forms A059438:
{1},
{1,1},
{1,2,3},
{1,3,7,13},
{1,4,12,32,71},
{1,5,18,58,177,461},
{1,6,25,92,327,1142,3447},
{1,7,33,135,531,2109,8411,29093},
{1,8,42,188,800,3440,15366,69692,273343},...
which has row sums equal to the factorials.
A136633
G.f.: A(x) = Series_Reversion( x / Sum_{n>=0} (n+1)!*x^n ).
Original entry on oeis.org
1, 2, 10, 68, 544, 4832, 46312, 471536, 5055328, 56795840, 667286656, 8197599104, 105446118784, 1423627264256, 20234885027968, 303737480337152, 4827671316780544, 81385455480335360, 1455806861755411456
Offset: 0
G.f.: A(x) = 1 + 2*x + 10*x^2 + 68*x^3 + 544*x^4 + 4832*x^5 + 46312*x^6 +...
Let F(x) = 1 + 2x + 6x^2 + 24x^3 + 120x^4 + 720x^5 +...+ (n+1)!*x^n +...
then A(x) = F(x*A(x)) and A(x/F(x)) = F(x);
also, a(n) = coefficient of x^n in F(x)^n divided by (n+1).
The g.f. A(x) also satisfies:
A(x) = 1 + 2*x*A(x)/(1+x*A(x)) + 2*2^2*x^2*A(x)^2/(1+2*x*A(x))^2 + 2*3^3*x^3*A(x)^3/(1+3*x*A(x))^3 + 2*4^4*x^4*A(x)^4/(1+4*x*A(x))^4 +...
-
a(n)=polcoeff(serreverse(x/sum(k=0,n,(k+1)!*x^k +x*O(x^n))),n)
-
a(n)=local(A=1+x); for(i=1, n, A=1+2*sum(m=1, n, m^m*x^m*A^m/(1+m*x*A+x*O(x^n))^m)); polcoeff(A, n)
for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Feb 04 2013
A230253
Coefficients of power series A(x) such that coefficient of x^n in A(x)^(n+1) equals (n+1)*(n+2)!/2 for n>=0.
Original entry on oeis.org
1, 3, 3, 6, 27, 162, 1206, 10476, 103059, 1125738, 13473378, 174997908, 2448791838, 36706645908, 586646510796, 9957100024152, 178868488496643, 3390603439026618, 67639341903290730, 1416612563019545220, 31079692422132040170, 712855563504590236860, 17061654943814209044660
Offset: 0
G.f. A(x) = 1 + 3*x + 3*x^2 + 6*x^3 + 27*x^4 + 162*x^5 + 1206*x^6 +...
The coefficients in A(x)^n begin:
n=1: [(1),3, 3, 6, 27, 162, 1206, 10476, 103059, ...];
n=2: [1, (6), 15, 30, 99, 522, 3582, 29484, 278883, ...];
n=3: [1, 9, (36), 99, 297, 1323, 8208, 63342, 572751, ...];
n=4: [1, 12, 66, (240), 783, 3132, 17298, 123552, 1060155, ...];
n=5: [1, 15, 105, 480, (1800), 7083, 35415, 231660, 1869885, ...];
n=6: [1, 18, 153, 846, 3672, (15120), 71415, 428490, 3226797, ...];
n=7: [1, 21, 210, 1365, 6804, 30240,(141120), 789939, 5529573, ...];
n=8: [1, 24, 276, 2064, 11682, 56736, 270720,(1451520), 9485343, ...];
n=9: [1, 27, 351, 2970, 18873, 100440, 500904, 2643840,(16329600), ...]; ...
where the coefficient of x^n in A(x)^(n+1) equals (n+1)*(n+2)!/2 for n>=0.
Notice that the diagonal above the main diagonal forms A111546.
A363431
Number of 123-avoiding stabilized-interval-free permutations of size n.
Original entry on oeis.org
1, 1, 1, 2, 5, 14, 44, 150, 496, 1758, 6018, 21782, 76414, 280448, 1001752, 3714032, 13450270, 50259604, 183995056, 691863078, 2555043320, 9657267848, 35921300392, 136360740016, 510267869416, 1944193285228, 7312488701868, 27950641500876, 105590010259396, 404724123141348, 1534775681029994
Offset: 0
For n=4 the a(4)=5 permutations are 2413, 3142, 3412, 3421, 4312.
Comments