A379312
Positive integers whose prime indices include a unique 1 or prime number.
Original entry on oeis.org
2, 3, 5, 11, 14, 17, 21, 26, 31, 35, 38, 39, 41, 46, 57, 58, 59, 65, 67, 69, 74, 77, 83, 86, 87, 94, 95, 98, 106, 109, 111, 115, 119, 122, 127, 129, 141, 142, 143, 145, 146, 147, 157, 158, 159, 178, 179, 182, 183, 185, 191, 194, 202, 206, 209, 211, 213, 214
Offset: 1
The terms together with their prime indices begin:
2: {1}
3: {2}
5: {3}
11: {5}
14: {1,4}
17: {7}
21: {2,4}
26: {1,6}
31: {11}
35: {3,4}
38: {1,8}
39: {2,6}
41: {13}
46: {1,9}
57: {2,8}
58: {1,10}
59: {17}
65: {3,6}
67: {19}
69: {2,9}
74: {1,12}
77: {4,5}
These "old" primes are listed by
A008578.
A080339 is the characteristic function for the old prime numbers.
Other counts of prime indices:
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],Length[Select[prix[#],#==1||PrimeQ[#]&]]==1&]
A340019
MM-numbers of labeled graphs with half-loops, without isolated vertices.
Original entry on oeis.org
1, 3, 5, 11, 13, 15, 17, 29, 31, 33, 39, 41, 43, 47, 51, 55, 59, 65, 67, 73, 79, 83, 85, 87, 93, 101, 109, 123, 127, 129, 137, 139, 141, 143, 145, 149, 155, 157, 163, 165, 167, 177, 179, 187, 191, 195, 199, 201, 205, 211, 215, 219, 221, 233, 235, 237, 241, 249
Offset: 1
The sequence of terms together with their corresponding multisets of multisets (edge sets) begins:
1: {} 55: {{2},{3}} 137: {{2,5}}
3: {{1}} 59: {{7}} 139: {{1,7}}
5: {{2}} 65: {{2},{1,2}} 141: {{1},{2,3}}
11: {{3}} 67: {{8}} 143: {{3},{1,2}}
13: {{1,2}} 73: {{2,4}} 145: {{2},{1,3}}
15: {{1},{2}} 79: {{1,5}} 149: {{3,4}}
17: {{4}} 83: {{9}} 155: {{2},{5}}
29: {{1,3}} 85: {{2},{4}} 157: {{12}}
31: {{5}} 87: {{1},{1,3}} 163: {{1,8}}
33: {{1},{3}} 93: {{1},{5}} 165: {{1},{2},{3}}
39: {{1},{1,2}} 101: {{1,6}} 167: {{2,6}}
41: {{6}} 109: {{10}} 177: {{1},{7}}
43: {{1,4}} 123: {{1},{6}} 179: {{13}}
47: {{2,3}} 127: {{11}} 187: {{3},{4}}
51: {{1},{4}} 129: {{1},{1,4}} 191: {{14}}
The version with full loops covering an initial interval is
A320461.
The case covering an initial interval is
A340018.
The version with full loops is
A340020.
A006450 lists primes of prime index.
A106349 lists primes of semiprime index.
A257994 counts prime prime indices.
A302242 is the weight of the multiset of multisets with MM-number n.
A302494 lists MM-numbers of sets of sets, with connected case
A328514.
A309356 lists MM-numbers of simple graphs.
A322551 lists primes of squarefree semiprime index.
A330944 counts nonprime prime indices.
A339112 lists MM-numbers of multigraphs with loops.
A339113 lists MM-numbers of multigraphs.
Cf.
A000040,
A000720,
A001222,
A005117,
A056239,
A076610,
A112798,
A289509,
A302590,
A305079,
A326788.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],And[SquareFreeQ[#],And@@(PrimeQ[#]||(SquareFreeQ[#]&&PrimeOmega[#]==2)&/@primeMS[#])]&]
A355535
Odd numbers of which it is not possible to choose a different prime factor of each prime index.
Original entry on oeis.org
9, 21, 25, 27, 45, 49, 57, 63, 75, 81, 99, 105, 115, 117, 121, 125, 133, 135, 147, 153, 159, 171, 175, 189, 195, 207, 225, 231, 243, 245, 261, 273, 275, 279, 285, 289, 297, 315, 325, 333, 343, 345, 351, 357, 361, 363, 369, 371, 375, 387, 393, 399, 405, 423
Offset: 1
The terms together with their prime indices begin:
9: {2,2}
21: {2,4}
25: {3,3}
27: {2,2,2}
45: {2,2,3}
49: {4,4}
57: {2,8}
63: {2,2,4}
75: {2,3,3}
81: {2,2,2,2}
99: {2,2,5}
105: {2,3,4}
For example, the prime indices of 897 are {2,6,9}, of which we can choose prime factors in two ways: (2,2,3) or (2,3,3); but neither of these has all distinct elements, so 897 is in the sequence.
The version for all divisors including evens is
A355740, zeros of
A355739.
Choices of a prime factor of each prime index:
A355741, unordered
A355744.
A001222 counts prime factors with multiplicity.
A003963 multiplies together the prime indices of n.
A120383 lists numbers divisible by all of their prime indices.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],OddQ[#]&&Select[Tuples[primeMS/@primeMS[#]],UnsameQ@@#&]=={}&]
A357852
Replace prime(k) with prime(k+2) in the prime factorization of n.
Original entry on oeis.org
1, 5, 7, 25, 11, 35, 13, 125, 49, 55, 17, 175, 19, 65, 77, 625, 23, 245, 29, 275, 91, 85, 31, 875, 121, 95, 343, 325, 37, 385, 41, 3125, 119, 115, 143, 1225, 43, 145, 133, 1375, 47, 455, 53, 425, 539, 155, 59, 4375, 169, 605, 161, 475, 61, 1715, 187, 1625, 203
Offset: 1
The terms together with their prime indices begin:
1: {}
5: {3}
7: {4}
25: {3,3}
11: {5}
35: {3,4}
13: {6}
125: {3,3,3}
49: {4,4}
55: {3,5}
17: {7}
175: {3,3,4}
19: {8}
65: {3,6}
77: {4,5}
625: {3,3,3,3}
Applying the transformation only once gives
A003961.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Table[Product[Prime[i+2],{i,primeMS[n]}],{n,30}]
-
a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = nextprime(nextprime(f[k,1]+1)+1)); factorback(f); \\ Michel Marcus, Oct 28 2022
-
from math import prod
from sympy import nextprime, factorint
def A357852(n): return prod(nextprime(p,ith=2)**e for p, e in factorint(n).items()) # Chai Wah Wu, Oct 29 2022
A379316
Positive integers whose prime indices include a unique squarefree number.
Original entry on oeis.org
2, 3, 5, 11, 13, 14, 17, 21, 29, 31, 35, 38, 41, 43, 46, 47, 57, 59, 67, 69, 73, 74, 77, 79, 83, 91, 95, 98, 101, 106, 109, 111, 113, 115, 119, 122, 127, 137, 139, 142, 147, 149, 157, 159, 163, 167, 178, 179, 181, 183, 185, 191, 194, 199, 203, 206, 209, 211
Offset: 1
The terms together with their prime indices begin:
2: {1}
3: {2}
5: {3}
11: {5}
13: {6}
14: {1,4}
17: {7}
21: {2,4}
29: {10}
31: {11}
35: {3,4}
38: {1,8}
41: {13}
43: {14}
46: {1,9}
A008966 is the characteristic function for the squarefree numbers.
Other counts of prime indices:
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],Length[Select[prix[#],SquareFreeQ]]==1&]
A355747
Number of multisets that can be obtained by choosing a divisor of each positive integer from 1 to n.
Original entry on oeis.org
1, 1, 2, 4, 10, 20, 58, 116, 320, 772, 2170, 4340, 14112, 28224, 78120, 212004, 612232, 1224464, 3873760, 7747520, 24224608, 64595088, 175452168, 350904336
Offset: 0
The a(0) = 1 through a(4) = 10 multisets:
{} {1} {1,1} {1,1,1} {1,1,1,1}
{1,2} {1,1,2} {1,1,1,2}
{1,1,3} {1,1,1,3}
{1,2,3} {1,1,1,4}
{1,1,2,2}
{1,1,2,3}
{1,1,2,4}
{1,1,3,4}
{1,2,2,3}
{1,2,3,4}
The sum of the same integers is
A000096.
Counting sequences instead of multisets gives
A066843.
The integers themselves are the rows of
A131818 (shifted).
For prime factors instead of divisors we have
A355746, factors
A355537.
A001222 counts prime factors with multiplicity.
-
Table[Length[Union[Sort/@Tuples[Divisors/@Range[n]]]],{n,0,10}]
-
from sympy import divisors
from itertools import count, islice
def agen():
s = {tuple()}
for n in count(1):
yield len(s)
s = set(tuple(sorted(t+(d,))) for t in s for d in divisors(n))
print(list(islice(agen(), 16))) # Michael S. Branicky, Aug 03 2022
A340020
MM-numbers of labeled graphs with loops, without isolated vertices.
Original entry on oeis.org
1, 7, 13, 23, 29, 43, 47, 73, 79, 91, 97, 101, 137, 139, 149, 161, 163, 167, 199, 203, 227, 233, 257, 269, 271, 293, 299, 301, 313, 329, 347, 373, 377, 389, 421, 439, 443, 449, 467, 487, 491, 499, 511, 553, 559, 577, 607, 611, 631, 647, 653, 661, 667, 673, 677
Offset: 1
The sequence of terms together with their corresponding multisets of multisets (edge sets) begins:
1: {} 161: {{1,1},{2,2}} 347: {{2,9}}
7: {{1,1}} 163: {{1,8}} 373: {{1,12}}
13: {{1,2}} 167: {{2,6}} 377: {{1,2},{1,3}}
23: {{2,2}} 199: {{1,9}} 389: {{4,5}}
29: {{1,3}} 203: {{1,1},{1,3}} 421: {{1,13}}
43: {{1,4}} 227: {{4,4}} 439: {{3,7}}
47: {{2,3}} 233: {{2,7}} 443: {{1,14}}
73: {{2,4}} 257: {{3,5}} 449: {{2,10}}
79: {{1,5}} 269: {{2,8}} 467: {{4,6}}
91: {{1,1},{1,2}} 271: {{1,10}} 487: {{2,11}}
97: {{3,3}} 293: {{1,11}} 491: {{1,15}}
101: {{1,6}} 299: {{1,2},{2,2}} 499: {{3,8}}
137: {{2,5}} 301: {{1,1},{1,4}} 511: {{1,1},{2,4}}
139: {{1,7}} 313: {{3,6}} 553: {{1,1},{1,5}}
149: {{3,4}} 329: {{1,1},{2,3}} 559: {{1,2},{1,4}}
The case with only one edge is
A106349.
The case covering an initial interval is
A320461.
The version allowing multiple edges is
A339112.
The half-loop version covering an initial interval is
A340018.
A006450 lists primes of prime index.
A302242 is the weight of the multiset of multisets with MM-number n.
A302494 lists MM-numbers of sets of sets, with connected case
A328514.
A309356 lists MM-numbers of simple graphs.
A339113 lists MM-numbers of multigraphs.
Cf.
A000040,
A000720,
A001222,
A005117,
A056239,
A076610,
A112798,
A289509,
A302590,
A305079,
A326754,
A326788.
-
Select[Range[100],SquareFreeQ[#]&&FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;PrimeOmega[PrimePi[p]]!=2]&]
A356065
Squarefree numbers whose prime indices are all prime-powers.
Original entry on oeis.org
1, 3, 5, 7, 11, 15, 17, 19, 21, 23, 31, 33, 35, 41, 51, 53, 55, 57, 59, 67, 69, 77, 83, 85, 93, 95, 97, 103, 105, 109, 115, 119, 123, 127, 131, 133, 155, 157, 159, 161, 165, 177, 179, 187, 191, 201, 205, 209, 211, 217, 227, 231, 241, 249, 253, 255, 265, 277
Offset: 1
105 has prime indices {2,3,4}, all three of which are prime-powers, so 105 is in the sequence.
The multiplicative version (factorizations) is
A050361, non-strict
A000688.
Counting twice-partitions of this type gives
A279786, non-strict
A279784.
These are the odd products of distinct elements of
A302493.
The case of primes (instead of prime-powers) is
A302590, non-strict
A076610.
These are the squarefree positions of 1's in
A355741.
A001222 counts prime-power divisors.
A005117 lists the squarefree numbers.
A034699 gives maximal prime-power divisor.
A355742 chooses a prime-power divisor of each prime index.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],SquareFreeQ[#]&&And@@PrimePowerQ/@primeMS[#]&]
A320633
Composite numbers whose prime indices are also composite.
Original entry on oeis.org
49, 91, 133, 161, 169, 203, 247, 259, 299, 301, 329, 343, 361, 371, 377, 427, 437, 481, 497, 511, 529, 551, 553, 559, 611, 623, 637, 667, 679, 689, 703, 707, 721, 749, 791, 793, 817, 841, 851, 893, 917, 923, 931, 949, 959, 973, 989, 1007, 1027, 1043, 1057
Offset: 1
The sequence of terms begins:
49 = prime(4)^2
91 = prime(4)*prime(6)
133 = prime(4)*prime(8)
161 = prime(4)*prime(9)
169 = prime(6)^2
203 = prime(4)*prime(10)
247 = prime(6)*prime(8)
259 = prime(4)*prime(12)
299 = prime(6)*prime(9)
301 = prime(4)*prime(14)
329 = prime(4)*prime(15)
343 = prime(4)^3
361 = prime(8)^2
371 = prime(4)*prime(16)
377 = prime(6)*prime(10)
427 = prime(4)*prime(18)
437 = prime(8)*prime(9)
481 = prime(6)*prime(12)
497 = prime(4)*prime(20)
511 = prime(4)*prime(21)
529 = prime(9)^2
551 = prime(8)*prime(10)
553 = prime(4)*prime(22)
559 = prime(6)*prime(14)
611 = prime(6)*prime(15)
623 = prime(4)*prime(24)
637 = prime(4)^2*prime(6)
Cf.
A000040,
A006450,
A007821,
A018252,
A050370,
A056239,
A076610,
A112798,
A302242,
A302478,
A320533,
A320628,
A320629.
-
Select[Range[2,1000],And[OddQ[#],!PrimeQ[#],And@@Not/@PrimeQ/@PrimePi/@First/@FactorInteger[#]]&]
A346068
Numbers that are the product of distinct primes with prime subscripts raised to prime powers.
Original entry on oeis.org
1, 9, 25, 27, 121, 125, 225, 243, 289, 675, 961, 1089, 1125, 1331, 1681, 2187, 2601, 3025, 3125, 3267, 3375, 3481, 4489, 4913, 6075, 6889, 7225, 7803, 8649, 11881, 11979, 15125, 15129, 16129, 24025, 24649, 25947, 27225, 28125, 29403, 29791, 30375, 31329, 32041, 33275, 34969
Offset: 1
675 = 3^3 * 5^2 = prime(prime(1))^prime(2) * prime(prime(2))^prime(1), therefore 675 is a term.
-
Join[{1}, Select[Range[35000], AllTrue[Join[PrimePi[(t = Transpose @ FactorInteger[#])[[1]]], t[[2]]], PrimeQ] &]] (* Amiram Eldar, Jul 30 2021 *)
-
from sympy import factorint, isprime, primepi
def ok(n):
f = factorint(n)
if not all(isprime(e) for e in f.values()): return False
return all(isprime(primepi(p)) for p in f)
print(list(filter(ok, range(35000)))) # Michael S. Branicky, Jul 30 2021
Comments