cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 130 results. Next

A379312 Positive integers whose prime indices include a unique 1 or prime number.

Original entry on oeis.org

2, 3, 5, 11, 14, 17, 21, 26, 31, 35, 38, 39, 41, 46, 57, 58, 59, 65, 67, 69, 74, 77, 83, 86, 87, 94, 95, 98, 106, 109, 111, 115, 119, 122, 127, 129, 141, 142, 143, 145, 146, 147, 157, 158, 159, 178, 179, 182, 183, 185, 191, 194, 202, 206, 209, 211, 213, 214
Offset: 1

Views

Author

Gus Wiseman, Dec 28 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    2: {1}
    3: {2}
    5: {3}
   11: {5}
   14: {1,4}
   17: {7}
   21: {2,4}
   26: {1,6}
   31: {11}
   35: {3,4}
   38: {1,8}
   39: {2,6}
   41: {13}
   46: {1,9}
   57: {2,8}
   58: {1,10}
   59: {17}
   65: {3,6}
   67: {19}
   69: {2,9}
   74: {1,12}
   77: {4,5}
		

Crossrefs

These "old" primes are listed by A008578.
For no composite parts we have A302540, counted by A034891 (strict A036497).
For all composite parts we have A320629, counted by A023895 (strict A204389).
For a unique prime part we have A331915, counted by A379304 (strict A379305).
Positions of ones in A379311, see A379313.
Partitions of this type are counted by A379314, strict A379315.
A000040 lists the prime numbers, differences A001223.
A002808 lists the composite numbers, nonprimes A018252, differences A073783 or A065310.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A080339 is the characteristic function for the old prime numbers.
A376682 gives k-th differences of old prime numbers, see A030016, A075526.
Other counts of prime indices:
- A330944 nonprime, see A002095, A096258, A320628, A330945.
- A379306 squarefree, see A302478, A379308, A379309, A379316.
- A379310 nonsquarefree, see A114374, A256012, A379307.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Length[Select[prix[#],#==1||PrimeQ[#]&]]==1&]

A340019 MM-numbers of labeled graphs with half-loops, without isolated vertices.

Original entry on oeis.org

1, 3, 5, 11, 13, 15, 17, 29, 31, 33, 39, 41, 43, 47, 51, 55, 59, 65, 67, 73, 79, 83, 85, 87, 93, 101, 109, 123, 127, 129, 137, 139, 141, 143, 145, 149, 155, 157, 163, 165, 167, 177, 179, 187, 191, 195, 199, 201, 205, 211, 215, 219, 221, 233, 235, 237, 241, 249
Offset: 1

Views

Author

Gus Wiseman, Jan 02 2021

Keywords

Comments

Here a half-loop is an edge with only one vertex, to be distinguished from a full loop, which has two equal vertices.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.
Also products of distinct primes whose prime indices are either themselves prime or a squarefree semiprime (A006881).

Examples

			The sequence of terms together with their corresponding multisets of multisets (edge sets) begins:
     1: {}              55: {{2},{3}}      137: {{2,5}}
     3: {{1}}           59: {{7}}          139: {{1,7}}
     5: {{2}}           65: {{2},{1,2}}    141: {{1},{2,3}}
    11: {{3}}           67: {{8}}          143: {{3},{1,2}}
    13: {{1,2}}         73: {{2,4}}        145: {{2},{1,3}}
    15: {{1},{2}}       79: {{1,5}}        149: {{3,4}}
    17: {{4}}           83: {{9}}          155: {{2},{5}}
    29: {{1,3}}         85: {{2},{4}}      157: {{12}}
    31: {{5}}           87: {{1},{1,3}}    163: {{1,8}}
    33: {{1},{3}}       93: {{1},{5}}      165: {{1},{2},{3}}
    39: {{1},{1,2}}    101: {{1,6}}        167: {{2,6}}
    41: {{6}}          109: {{10}}         177: {{1},{7}}
    43: {{1,4}}        123: {{1},{6}}      179: {{13}}
    47: {{2,3}}        127: {{11}}         187: {{3},{4}}
    51: {{1},{4}}      129: {{1},{1,4}}    191: {{14}}
		

Crossrefs

The version with full loops covering an initial interval is A320461.
The case covering an initial interval is A340018.
The version with full loops is A340020.
A006450 lists primes of prime index.
A106349 lists primes of semiprime index.
A257994 counts prime prime indices.
A302242 is the weight of the multiset of multisets with MM-number n.
A302494 lists MM-numbers of sets of sets, with connected case A328514.
A309356 lists MM-numbers of simple graphs.
A322551 lists primes of squarefree semiprime index.
A330944 counts nonprime prime indices.
A339112 lists MM-numbers of multigraphs with loops.
A339113 lists MM-numbers of multigraphs.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],And[SquareFreeQ[#],And@@(PrimeQ[#]||(SquareFreeQ[#]&&PrimeOmega[#]==2)&/@primeMS[#])]&]

A355535 Odd numbers of which it is not possible to choose a different prime factor of each prime index.

Original entry on oeis.org

9, 21, 25, 27, 45, 49, 57, 63, 75, 81, 99, 105, 115, 117, 121, 125, 133, 135, 147, 153, 159, 171, 175, 189, 195, 207, 225, 231, 243, 245, 261, 273, 275, 279, 285, 289, 297, 315, 325, 333, 343, 345, 351, 357, 361, 363, 369, 371, 375, 387, 393, 399, 405, 423
Offset: 1

Views

Author

Gus Wiseman, Jul 22 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    9: {2,2}
   21: {2,4}
   25: {3,3}
   27: {2,2,2}
   45: {2,2,3}
   49: {4,4}
   57: {2,8}
   63: {2,2,4}
   75: {2,3,3}
   81: {2,2,2,2}
   99: {2,2,5}
  105: {2,3,4}
For example, the prime indices of 897 are {2,6,9}, of which we can choose prime factors in two ways: (2,2,3) or (2,3,3); but neither of these has all distinct elements, so 897 is in the sequence.
		

Crossrefs

Including evens gives A355529.
The version for all divisors including evens is A355740, zeros of A355739.
Choices of a prime factor of each prime index: A355741, unordered A355744.
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A120383 lists numbers divisible by all of their prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],OddQ[#]&&Select[Tuples[primeMS/@primeMS[#]],UnsameQ@@#&]=={}&]

A357852 Replace prime(k) with prime(k+2) in the prime factorization of n.

Original entry on oeis.org

1, 5, 7, 25, 11, 35, 13, 125, 49, 55, 17, 175, 19, 65, 77, 625, 23, 245, 29, 275, 91, 85, 31, 875, 121, 95, 343, 325, 37, 385, 41, 3125, 119, 115, 143, 1225, 43, 145, 133, 1375, 47, 455, 53, 425, 539, 155, 59, 4375, 169, 605, 161, 475, 61, 1715, 187, 1625, 203
Offset: 1

Views

Author

Gus Wiseman, Oct 28 2022

Keywords

Comments

This is the same as A045966 except the first term is 1 instead of 3.

Examples

			The terms together with their prime indices begin:
    1: {}
    5: {3}
    7: {4}
   25: {3,3}
   11: {5}
   35: {3,4}
   13: {6}
  125: {3,3,3}
   49: {4,4}
   55: {3,5}
   17: {7}
  175: {3,3,4}
   19: {8}
   65: {3,6}
   77: {4,5}
  625: {3,3,3,3}
		

Crossrefs

Applying the transformation only once gives A003961.
A permutation of A007310.
Other multiplicative sequences: A064988, A064989, A357977, A357980, A357983.
A000040 lists the primes.
A056239 adds up prime indices, row-sums of A112798.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Product[Prime[i+2],{i,primeMS[n]}],{n,30}]
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = nextprime(nextprime(f[k,1]+1)+1)); factorback(f); \\ Michel Marcus, Oct 28 2022
    
  • Python
    from math import prod
    from sympy import nextprime, factorint
    def A357852(n): return prod(nextprime(p,ith=2)**e for p, e in factorint(n).items()) # Chai Wah Wu, Oct 29 2022

Formula

a(n) = A003961(A003961(n)).

A379316 Positive integers whose prime indices include a unique squarefree number.

Original entry on oeis.org

2, 3, 5, 11, 13, 14, 17, 21, 29, 31, 35, 38, 41, 43, 46, 47, 57, 59, 67, 69, 73, 74, 77, 79, 83, 91, 95, 98, 101, 106, 109, 111, 113, 115, 119, 122, 127, 137, 139, 142, 147, 149, 157, 159, 163, 167, 178, 179, 181, 183, 185, 191, 194, 199, 203, 206, 209, 211
Offset: 1

Views

Author

Gus Wiseman, Dec 29 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    2: {1}
    3: {2}
    5: {3}
   11: {5}
   13: {6}
   14: {1,4}
   17: {7}
   21: {2,4}
   29: {10}
   31: {11}
   35: {3,4}
   38: {1,8}
   41: {13}
   43: {14}
   46: {1,9}
		

Crossrefs

For all squarefree parts we have A302478, zeros of A379310.
Positions of 1 in A379306.
For no squarefree parts we have A379307, counted by A114374, strict A256012.
Partitions of this type are counted by A379308, strict A379309.
A000040 lists the primes, differences A001223.
A005117 lists the squarefree numbers, differences A076259.
A008966 is the characteristic function for the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
Other counts of prime indices:
- A330944 nonprime, see A000586, A000607, A076610, A330945.
- A379311 prime or 1, see A204389, A320629, A379312-A379315.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Length[Select[prix[#],SquareFreeQ]]==1&]

A355747 Number of multisets that can be obtained by choosing a divisor of each positive integer from 1 to n.

Original entry on oeis.org

1, 1, 2, 4, 10, 20, 58, 116, 320, 772, 2170, 4340, 14112, 28224, 78120, 212004, 612232, 1224464, 3873760, 7747520, 24224608, 64595088, 175452168, 350904336
Offset: 0

Views

Author

Gus Wiseman, Jul 20 2022

Keywords

Examples

			The a(0) = 1 through a(4) = 10 multisets:
  {}  {1}  {1,1}  {1,1,1}  {1,1,1,1}
           {1,2}  {1,1,2}  {1,1,1,2}
                  {1,1,3}  {1,1,1,3}
                  {1,2,3}  {1,1,1,4}
                           {1,1,2,2}
                           {1,1,2,3}
                           {1,1,2,4}
                           {1,1,3,4}
                           {1,2,2,3}
                           {1,2,3,4}
		

Crossrefs

The sum of the same integers is A000096.
The product of the same integers is A000142, Heinz number A070826.
Counting sequences instead of multisets gives A066843.
The integers themselves are the rows of A131818 (shifted).
For prime indices we have A355733, only prime factors A355744.
For prime factors instead of divisors we have A355746, factors A355537.
A000005 counts divisors.
A000040 lists the prime numbers.
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.

Programs

  • Mathematica
    Table[Length[Union[Sort/@Tuples[Divisors/@Range[n]]]],{n,0,10}]
  • Python
    from sympy import divisors
    from itertools import count, islice
    def agen():
        s = {tuple()}
        for n in count(1):
            yield len(s)
            s = set(tuple(sorted(t+(d,))) for t in s for d in divisors(n))
    print(list(islice(agen(), 16))) # Michael S. Branicky, Aug 03 2022

Formula

a(n) = A355733(A070826(n)).
a(p) = 2*a(p-1) for p prime. - Michael S. Branicky, Aug 03 2022

Extensions

a(15)-a(21) from Michael S. Branicky, Aug 03 2022
a(22)-a(23) from Michael S. Branicky, Aug 08 2022

A340020 MM-numbers of labeled graphs with loops, without isolated vertices.

Original entry on oeis.org

1, 7, 13, 23, 29, 43, 47, 73, 79, 91, 97, 101, 137, 139, 149, 161, 163, 167, 199, 203, 227, 233, 257, 269, 271, 293, 299, 301, 313, 329, 347, 373, 377, 389, 421, 439, 443, 449, 467, 487, 491, 499, 511, 553, 559, 577, 607, 611, 631, 647, 653, 661, 667, 673, 677
Offset: 1

Views

Author

Gus Wiseman, Jan 02 2021

Keywords

Comments

Here a loop is an edge with two equal vertices, distinguished from a half-loop, which has only one vertex.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.
Also products of distinct primes whose prime indices are semiprimes, where a semiprime (A001358) is a product of any two prime numbers.

Examples

			The sequence of terms together with their corresponding multisets of multisets (edge sets) begins:
      1: {}              161: {{1,1},{2,2}}    347: {{2,9}}
      7: {{1,1}}         163: {{1,8}}          373: {{1,12}}
     13: {{1,2}}         167: {{2,6}}          377: {{1,2},{1,3}}
     23: {{2,2}}         199: {{1,9}}          389: {{4,5}}
     29: {{1,3}}         203: {{1,1},{1,3}}    421: {{1,13}}
     43: {{1,4}}         227: {{4,4}}          439: {{3,7}}
     47: {{2,3}}         233: {{2,7}}          443: {{1,14}}
     73: {{2,4}}         257: {{3,5}}          449: {{2,10}}
     79: {{1,5}}         269: {{2,8}}          467: {{4,6}}
     91: {{1,1},{1,2}}   271: {{1,10}}         487: {{2,11}}
     97: {{3,3}}         293: {{1,11}}         491: {{1,15}}
    101: {{1,6}}         299: {{1,2},{2,2}}    499: {{3,8}}
    137: {{2,5}}         301: {{1,1},{1,4}}    511: {{1,1},{2,4}}
    139: {{1,7}}         313: {{3,6}}          553: {{1,1},{1,5}}
    149: {{3,4}}         329: {{1,1},{2,3}}    559: {{1,2},{1,4}}
		

Crossrefs

The case with only one edge is A106349.
The case covering an initial interval is A320461.
The version allowing multiple edges is A339112.
The half-loop version covering an initial interval is A340018.
The half-loop version is A340019.
A006450 lists primes of prime index.
A302242 is the weight of the multiset of multisets with MM-number n.
A302494 lists MM-numbers of sets of sets, with connected case A328514.
A309356 lists MM-numbers of simple graphs.
A339113 lists MM-numbers of multigraphs.

Programs

  • Mathematica
    Select[Range[100],SquareFreeQ[#]&&FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;PrimeOmega[PrimePi[p]]!=2]&]

A356065 Squarefree numbers whose prime indices are all prime-powers.

Original entry on oeis.org

1, 3, 5, 7, 11, 15, 17, 19, 21, 23, 31, 33, 35, 41, 51, 53, 55, 57, 59, 67, 69, 77, 83, 85, 93, 95, 97, 103, 105, 109, 115, 119, 123, 127, 131, 133, 155, 157, 159, 161, 165, 177, 179, 187, 191, 201, 205, 209, 211, 217, 227, 231, 241, 249, 253, 255, 265, 277
Offset: 1

Views

Author

Gus Wiseman, Jul 25 2022

Keywords

Examples

			105 has prime indices {2,3,4}, all three of which are prime-powers, so 105 is in the sequence.
		

Crossrefs

The multiplicative version (factorizations) is A050361, non-strict A000688.
Heinz numbers of the partitions counted by A054685, with 1's A106244, non-strict A023894, non-strict with 1's A023893.
Counting twice-partitions of this type gives A279786, non-strict A279784.
Counting twice-factorizations gives A295935, non-strict A296131.
These are the odd products of distinct elements of A302493.
Allowing prime index 1 gives A302496, non-strict A302492.
The case of primes (instead of prime-powers) is A302590, non-strict A076610.
These are the squarefree positions of 1's in A355741.
This is the squarefree case of A355743, complement A356066.
A001222 counts prime-power divisors.
A005117 lists the squarefree numbers.
A034699 gives maximal prime-power divisor.
A246655 lists the prime-powers (A000961 includes 1), towers A164336.
A355742 chooses a prime-power divisor of each prime index.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SquareFreeQ[#]&&And@@PrimePowerQ/@primeMS[#]&]

Formula

Intersection of A005117 and A355743.

A320633 Composite numbers whose prime indices are also composite.

Original entry on oeis.org

49, 91, 133, 161, 169, 203, 247, 259, 299, 301, 329, 343, 361, 371, 377, 427, 437, 481, 497, 511, 529, 551, 553, 559, 611, 623, 637, 667, 679, 689, 703, 707, 721, 749, 791, 793, 817, 841, 851, 893, 917, 923, 931, 949, 959, 973, 989, 1007, 1027, 1043, 1057
Offset: 1

Views

Author

Gus Wiseman, Oct 18 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of terms begins:
   49 = prime(4)^2
   91 = prime(4)*prime(6)
  133 = prime(4)*prime(8)
  161 = prime(4)*prime(9)
  169 = prime(6)^2
  203 = prime(4)*prime(10)
  247 = prime(6)*prime(8)
  259 = prime(4)*prime(12)
  299 = prime(6)*prime(9)
  301 = prime(4)*prime(14)
  329 = prime(4)*prime(15)
  343 = prime(4)^3
  361 = prime(8)^2
  371 = prime(4)*prime(16)
  377 = prime(6)*prime(10)
  427 = prime(4)*prime(18)
  437 = prime(8)*prime(9)
  481 = prime(6)*prime(12)
  497 = prime(4)*prime(20)
  511 = prime(4)*prime(21)
  529 = prime(9)^2
  551 = prime(8)*prime(10)
  553 = prime(4)*prime(22)
  559 = prime(6)*prime(14)
  611 = prime(6)*prime(15)
  623 = prime(4)*prime(24)
  637 = prime(4)^2*prime(6)
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,1000],And[OddQ[#],!PrimeQ[#],And@@Not/@PrimeQ/@PrimePi/@First/@FactorInteger[#]]&]

A346068 Numbers that are the product of distinct primes with prime subscripts raised to prime powers.

Original entry on oeis.org

1, 9, 25, 27, 121, 125, 225, 243, 289, 675, 961, 1089, 1125, 1331, 1681, 2187, 2601, 3025, 3125, 3267, 3375, 3481, 4489, 4913, 6075, 6889, 7225, 7803, 8649, 11881, 11979, 15125, 15129, 16129, 24025, 24649, 25947, 27225, 28125, 29403, 29791, 30375, 31329, 32041, 33275, 34969
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 30 2021

Keywords

Examples

			675 = 3^3 * 5^2 = prime(prime(1))^prime(2) * prime(prime(2))^prime(1), therefore 675 is a term.
		

Crossrefs

Intersection of A056166 and A076610.

Programs

  • Mathematica
    Join[{1}, Select[Range[35000], AllTrue[Join[PrimePi[(t = Transpose @ FactorInteger[#])[[1]]], t[[2]]], PrimeQ] &]] (* Amiram Eldar, Jul 30 2021 *)
  • Python
    from sympy import factorint, isprime, primepi
    def ok(n):
        f = factorint(n)
        if not all(isprime(e) for e in f.values()): return False
        return all(isprime(primepi(p)) for p in f)
    print(list(filter(ok, range(35000)))) # Michael S. Branicky, Jul 30 2021

Formula

Sum_{n>=1} 1/a(n) = Product_{p in A006450} (1 + Sum_{q prime} 1/p^q) = 1.2271874... - Amiram Eldar, Jul 31 2021
Previous Showing 41-50 of 130 results. Next