A080875
a(n)*a(n+3) - a(n+1)*a(n+2) = 5, given a(0)=a(1)=1, a(2)=6.
Original entry on oeis.org
1, 1, 6, 11, 71, 131, 846, 1561, 10081, 18601, 120126, 221651, 1431431, 2641211, 17057046, 31472881, 203253121, 375033361, 2421980406, 4468927451, 28860511751, 53252096051, 343904160606, 634556225161, 4097989415521
Offset: 0
-
LinearRecurrence[{0,12,0,-1},{1,1,6,11},30] (* Harvey P. Dale, Jul 14 2024 *)
A123971
Triangle T(n,k), read by rows, defined by T(n,k)=3*T(n-1,k)-T(n-1,k-1)-T(n-2,k), T(0,0)=1, T(1,0)=2, T(1,1)=-1, T(n,k)=0 if k<0 or if k>n.
Original entry on oeis.org
1, 2, -1, 5, -5, 1, 13, -19, 8, -1, 34, -65, 42, -11, 1, 89, -210, 183, -74, 14, -1, 233, -654, 717, -394, 115, -17, 1, 610, -1985, 2622, -1825, 725, -165, 20, -1, 1597, -5911, 9134, -7703, 3885, -1203, 224, -23, 1, 4181, -17345, 30691, -30418, 18633, -7329
Offset: 0
Triangle begins:
1
2, -1
5, -5, 1
13, -19, 8, -1
34, -65, 42, -11, 1
89, -210, 183, -74, 14, -1
233, -654, 717, -394, 115, -17, 1
Triangle (0, 2, 1/2, 1/2, 0, 0, ...) DELTA (1, -2, 0, 0, ...) begins:
1
0, 1
0, 2, -1
0, 5, -5, 1
0, 13, -19, 8, -1
0, 34, -65, 42, -11, 1
0, 89, -210, 183, -74, 14, -1
0, 233, -654, 717, -394, 115, -17, 1
Cf.
A094954,
A098495,
A123971,
A126124,
A152063,
A001519,
A079935,
A004253,
A001653,
A049685,
A070997,
A070998,
A072256,
A078922,
A077417,
A085260,
A001570,
A001870,
A126124.
-
Mathematica ( general k th center) Clear[M, T, d, a, x, k] k = 3 T[n_, m_, d_] := If[ n == m && n < d && m < d, k, If[n == m - 1 || n == m + 1, -1, If[n == m == d, k - 1, 0]]] M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}] Table[M[d], {d, 1, 10}] Table[Det[M[d]], {d, 1, 10}] Table[Det[M[d] - x*IdentityMatrix[d]], {d, 1, 10}] a = Join[{M[1]}, Table[CoefficientList[ Det[M[d] - x*IdentityMatrix[d]], x], {d, 1, 10}]] Flatten[a] MatrixForm[a] Table[NSolve[Det[M[d] - x*IdentityMatrix[d]] == 0, x], {d, 1, 10}] Table[x /. NSolve[Det[M[d] - x*IdentityMatrix[d]] == 0, x][[d]], {d, 1, 10}]
-
T(n,k)=polcoeff(polcoeff(Ser((1-x)/(1+(y-3)*x+x^2)),n,x),n-k,y) \\ Ralf Stephan, Dec 12 2013
-
@CachedFunction
def A123971(n,k): # With T(0,0) = 1!
if n< 0: return 0
if n==0: return 1 if k == 0 else 0
h = 2*A123971(n-1,k) if n==1 else 3*A123971(n-1,k)
return A123971(n-1,k-1) - A123971(n-2,k) - h
for n in (0..9): [A123971(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
A159681
The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 5*n(j)+1=a(j)*a(j) and 7*n(j)+1=b(j)*b(j) with positive integer numbers.
Original entry on oeis.org
0, 24, 3432, 487344, 69199440, 9825833160, 1395199109304, 198108447688032, 28130004372591264, 3994262512460271480, 567157146764985958920, 80532320578115545895184, 11435022364945642531157232, 1623692643501703123878431784, 230552920354876897948206156120
Offset: 1
-
R:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients( R!(24*x^2/((1-x)*(1-142*x+x^2)))); // G. C. Greubel, Jun 03 2018
-
for a from 1 by 2 to 100000 do b:=sqrt((7*a*a-2)/5): if (trunc(b)=b) then
n:=(a*a-1)/5: La:=[op(La),a]:Lb:=[op(Lb),b]:Ln:=[op(Ln),n]: end if: end do:
# Second program
seq((6/35)*(simplify(ChebyshevU(n,71) -141*ChebyshevU(n-1,71)) -1), n=1..30); # G. C. Greubel, Sep 27 2022
-
LinearRecurrence[{143,-143,1}, {0, 24, 3432}, 30] (* or *) CoefficientList[Series[24*x^2/((1-x)*(1-142*x+x^2)), {x,0,30}], x] (* G. C. Greubel, Jun 03 2018 *)
-
concat(0, Vec(-24*x^2/((x-1)*(x^2-142*x+1)) + O(x^20))) \\ Colin Barker, Jul 26 2016
-
a(n) = round((-12+(6+sqrt(35))*(71+12*sqrt(35))^(-n)-(-6+sqrt(35))*(71+12*sqrt(35))^n)/70) \\ Colin Barker, Jul 26 2016
-
[(6/35)*(-1 + chebyshev_U(n, 71) - 141*chebyshev_U(n-1, 71)) for n in range(1,30)] # G. C. Greubel, Sep 27 2022
A174227
Expansion of -(10*x + sqrt((1-10*x)*(1-14*x)))/(2*x).
Original entry on oeis.org
1, 1, 12, 145, 1764, 21602, 266232, 3301349, 41178660, 516512462, 6513158376, 82542517386, 1051024082472, 13442267711940, 172638285341040, 2225824753934445, 28802104070304420, 373966734921011990
Offset: 0
-
with(LREtools): with(FormalPowerSeries): # requires Maple 2022
ogf:= -(10*x + sqrt((1-10*x)*(1-14*x)))/(2*x): req:= FindRE(ogf,x,u(n));
init:= [1, 1, 12, 145]: iseq:= seq(u(i-1)=init[i],i=1..nops(init)):
rmin:= subs(n=n-2, MinimalRecurrence(req,u(n),{iseq})[1]); # Mathar's recurrence
a:= gfun:-rectoproc({rmin, iseq}, u(n), remember):
seq(a(n),n=0..17); # Georg Fischer, Nov 03 2022
# Alternative, using function FindSeq from A174403:
ogf := -(10*x + sqrt((1-10*x)*(1-14*x)))/(2*x):
a := FindSeq(ogf): seq(a(n), n=0..17); # Peter Luschny, Nov 04 2022
A385121
a(n+1) = 12*a(n) - a(n-1), a(0) = a(1) = 2, a(n) = a(1-n).
Original entry on oeis.org
2, 2, 22, 262, 3122, 37202, 443302, 5282422, 62945762, 750066722, 8937854902, 106504192102, 1269112450322, 15122845211762, 180205030090822, 2147337515878102, 25587845160446402, 304906804409478722, 3633293807753298262, 43294618888630100422
Offset: 0
G.f. = 2 + 2*x + 22*x^2 + 262*x^3 + 3122*x^4 + 37202*x^5 + ...
-
a[ n_] := Which[n<1, a[1-n], n==1, 2, True, 12*a[n-1] - a[n-2]];
-
{a(n) = if(n<1, a(1-n), n==1, 2, 12*a(n-1) - a(n-2))};
Comments