cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A077057 Minimal positive solution a(n) of Diophantine equation a(n)^2 - a(n)*b(n) - G(n)*b(n)^2 = +1 or -1 with G(n) := A078358(n). The companion sequence is b(n)=A077058(n).

Original entry on oeis.org

1, 2, 5, 3, 3, 27, 7, 37, 4, 4, 171, 22, 9, 14, 1193, 5, 5, 553, 16, 6173, 11, 45, 143, 849, 6, 6, 18339, 94, 1893, 103, 13, 33, 2353, 115, 12703, 7, 7, 67115, 701, 73, 59, 1891117, 15, 551427, 23, 49771, 39, 4105015, 8, 8, 24673, 41, 75585293, 25, 9095891, 989, 17, 386, 6445, 87, 771, 1385
Offset: 1

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

This equation can also be written as (2*a(n) - b(n))^2 - D(n)*b(n)^2 = +4 or -4 with D(n) := A077425(n) = 1 + 4*G(n).
This is from Perron's table (see reference p. 108, for n = 1..28) which gives the minimal x,y values which solve the above mentioned Diophantine equations.
For Pell equation x^2 - D*y^2 = +4, see A077428 and A078355. For Pell equation x^2 - D*y^2 = -4, see A078356 and A078357.

References

  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).

Crossrefs

Programs

  • Mathematica
    g[n_] := Ceiling[Sqrt[n]] + n - 1; r[n_] := Reduce[an > 0 && bn > 0 && (an ^2 - an*bn - g[n]*bn^2 == 1 || an^2 - an*bn - g[n]*bn^2 == - 1), {an, bn}, Integers] /. C -> c; ab[n_] := DeleteCases[ Flatten[ Table[{an, bn} /. {ToRules[r[n]]} // Simplify, {c[1], 0, 1}], 1], an | bn]; a[n_] := a[n] = Min[ab[n][[All, 1]]]; Table[Print[{n, a[n]}]; a[n], {n, 1, 62}] (* Jean-François Alcover, Oct 04 2012 *)

Formula

a(n) = (A078361(n) + A077058(n)) / 2. [Max Alekseyev, Feb 06 2010]

Extensions

More terms from Max Alekseyev, Feb 06 2010
a(9), a(33), a(54) corrected (after notice by Jean-François Alcover); a(58) through a(62) added. - Wolfdieter Lang, Oct 04 2012

A077058 Minimal positive solution a(n) of Diophantine equation b(n)^2 - b(n)*a(n) - G(n)*a(n)^2 = +1 or -1 with G(n) := A078358(n). The companion sequence is b(n)=A077057(n).

Original entry on oeis.org

1, 1, 2, 1, 1, 8, 2, 10, 1, 1, 40, 5, 2, 3, 250, 1, 1, 106, 3, 1138, 2, 8, 25, 146, 1, 1, 2968, 15, 298, 16, 2, 5, 352, 17, 1856, 1, 1, 9384, 97, 10, 8, 253970, 2, 72664, 3, 6440, 5, 521904, 1, 1, 3034, 5, 9148450, 3, 1084152, 117, 2, 45, 746, 10, 88, 157, 126890, 1, 1
Offset: 1

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

This equation can also be written as (2*b(n)-a(n))^2 - D(n)*a(n)^2 = +4 or -4 with D(n) := A077425(n)=1+4*G(n).
This is from Perron's table (see reference p. 108, for n = 1..28) which gives the minimal x,y values which solve the above mentioned Diophantine equations.
For Pell equation x^2 - D*y^2 = +4, see A077428 and A078355. For Pell equation x^2 - D*y^2 = -4, see A078356 and A078357.

References

  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).

Programs

  • Mathematica
    g[n_] := Ceiling[ Sqrt[n] ] + n - 1; r[n_] := Reduce[an > 0 && (bn^2 - bn *an - g[n]*an^2 == 1 || bn^2 - bn *an - g[n]*an^2 == - 1), {an, bn}, Integers] /. C -> c; ab[n_] := DeleteCases[ Flatten[ Table[{an, bn} /. {ToRules[r[n]]} // Simplify, {c[1], 0, 1}] , 1] , an | bn]; a[n_] := a[n] = Min[ ab[n][[All, 1]] ]; Table[ Print[{n, a[n]}]; a[n], {n, 1, 65}] (* Jean-François Alcover, Oct 03 2012 *)
  • PARI
    forstep(D=1,1000,4, if(issquare(D),next); u=bnfinit(x^2-D).fu[1]; k=1; while( denominator(t=polcoeff(lift(u^k),1)*2)>1, k++); print1(abs(t),", "); ) \\ Max Alekseyev, Feb 06 2010

Extensions

More terms from Max Alekseyev, Feb 06 2010

A078363 A Chebyshev T-sequence with Diophantine property.

Original entry on oeis.org

2, 13, 167, 2158, 27887, 360373, 4656962, 60180133, 777684767, 10049721838, 129868699127, 1678243366813, 21687295069442, 280256592535933, 3621648407897687, 46801172710133998, 604793596823844287, 7815515585999841733, 100996909021174098242
Offset: 0

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

a(n) gives the general (positive integer) solution of the Pell equation a^2 - 165*b^2 = +4 with companion sequence b(n)=A078362(n-1), n>=1.
Except for the first term, positive values of x (or y) satisfying x^2 - 13xy + y^2 + 165 = 0. - Colin Barker, Feb 26 2014

References

  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).

Crossrefs

Cf. A078362.
Cf. A077428, A078355 (Pell +4 equations).

Programs

  • Mathematica
    a[0] = 2; a[1] = 13; a[n_] := 13a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 16}] (* Robert G. Wilson v, Jan 30 2004 *)
    LinearRecurrence[{13,-1},{2,13},20] (* Harvey P. Dale, Oct 28 2016 *)
  • PARI
    a(n)=if(n<0,0,2*subst(poltchebi(n),x,13/2))
    
  • PARI
    a(n)=if(n<0,0,polsym(1-13*x+x^2,n)[n+1])
    
  • PARI
    Vec((2-13*x)/(1-13*x+x^2) + O(x^100)) \\ Colin Barker, Feb 26 2014
    
  • Sage
    [lucas_number2(n,13,1) for n in range(0,20)] # Zerinvary Lajos, Jun 25 2008

Formula

a(n) = 13*a(n-1)-a(n-2), n >= 1; a(-1)=13, a(0)=2.
a(n) = S(n, 13) - S(n-2, 13) = 2*T(n, 13/2) with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. S(n, 13)=A078362(n). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, case. See A049310 and A053120.
G.f.: (2-13*x)/(1-13*x+x^2).
a(n) = ap^n + am^n, with ap := (13+sqrt(165))/2 and am := (13-sqrt(165))/2.
a(n) = sqrt(4 + 165*A078362(n-1)^2), n>=1, (Pell equation d=165, +4).
E.g.f.: 2*exp(13*x/2)*cosh(sqrt(165)*x/2). - Stefano Spezia, Sep 24 2022

Extensions

More terms from Colin Barker, Feb 26 2014

A078368 A Chebyshev S-sequence with Diophantine property.

Original entry on oeis.org

1, 19, 360, 6821, 129239, 2448720, 46396441, 879083659, 16656193080, 315588584861, 5979526919279, 113295422881440, 2146633507828081, 40672741225852099, 770635449783361800, 14601400804658022101
Offset: 0

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

a(n) gives the general (positive integer) solution of the Pell equation b^2 - 357*a^2 =+4 with companion sequence b(n)=A078369(n+1), n>=0.
This is the m=21 member of the m-family of sequences S(n,m-2) = S(2*n+1,sqrt(m))/sqrt(m). The m=4..20 (nonnegative) sequences are: A000027, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189, A004190, A004191, A078362, A007655, A078364, A077412, A078366 and A049660. The m=1..3 (signed) sequences are A049347, A056594, A010892.
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 19's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>=2, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,18}. Milan Janjic, Jan 25 2015

Crossrefs

a(n) = sqrt((A078369(n+1)^2 - 4)/357), n>=0, (Pell equation d=357, +4).
Cf. A077428, A078355 (Pell +4 equations).

Programs

Formula

a(n) = 19*a(n-1)-a(n-2), n >= 1; a(-1)=0, a(0)=1.
a(n) = (ap^(n+1)-am^(n+1))/(ap-am) with ap = (19+sqrt(357))/2 and am = (19-sqrt(357))/2.
a(n) = S(2*n+1, sqrt(21))/sqrt(21) = S(n, 19); S(n, x) := U(n, x/2), Chebyshev polynomials of the 2nd kind, A049310.
G.f.: 1/(1-19*x+x^2).
a(n) = Sum_{k=0..n} A101950(n,k)*18^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = 1/17*(17 + sqrt(357)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = 1/38*(17 + sqrt(357)). - Peter Bala, Dec 23 2012

A090733 a(n) = 25*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 25.

Original entry on oeis.org

2, 25, 623, 15550, 388127, 9687625, 241802498, 6035374825, 150642568127, 3760028828350, 93850078140623, 2342491924687225, 58468448039040002, 1459368709051312825, 36425749278243780623, 909184363247043202750
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 18 2004

Keywords

Comments

A Chebyshev T-sequence with Diophantine property.
a(n) gives the general (nonnegative integer) solution of the Pell equation a^2 - 69*(3*b)^2 =+4 together with the companion sequence b(n)=A097780(n-1), n>=0.

Examples

			(x,y) =(2,0), (25;1), (623;25), (15550;624), ... give the nonnegative integer solutions to x^2 - 69*(3*y)^2 =+4.
		

References

  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).

Crossrefs

a(n)=sqrt(4 + 69*(3*A097780(n-1))^2), n>=1.
Cf. A077428, A078355 (Pell +4 equations).
Cf. A097779 for 2*T(n, 23/2).

Programs

  • Mathematica
    a[0] = 2; a[1] = 25; a[n_] := 25a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *)
  • Sage
    [lucas_number2(n,25,1) for n in range(0,20)] # Zerinvary Lajos, Jun 26 2008

Formula

a(n) = S(n, 25) - S(n-2, 25) = 2*T(n, 25/2) with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. S(n, 25)=A097780(n). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, kind. See A049310 and A053120.
a(n) = ap^n + am^n, with ap := (25+3*sqrt(69))/2 and am := (25-3*sqrt(69))/2.
G.f.: (2-25*x)/(1-25*x+x^2).

Extensions

Extension, Chebyshev and Pell comments from Wolfdieter Lang, Aug 31 2004

A078369 A Chebyshev T-sequence with Diophantine property.

Original entry on oeis.org

2, 19, 359, 6802, 128879, 2441899, 46267202, 876634939, 16609796639, 314709501202, 5962870726199, 112979834296579, 2140653980908802, 40559445802970659, 768488816275533719, 14560728063432170002
Offset: 0

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

a(n) gives the general (positive integer) solution of the Pell equation a^2 - 357*b^2 =+4 with companion sequence b(n)=A078368(n-1), n>=1.

References

  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).

Crossrefs

a(n)=sqrt(4 + 357*A078368(n-1)^2), n>=1, (Pell equation d=357, +4).
Cf. A077428, A078355 (Pell +4 equations).

Programs

  • Mathematica
    a[0] = 2; a[1] = 19; a[n_] := 19a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *)
    LinearRecurrence[{19,-1},{2,19},20] (* Harvey P. Dale, Dec 24 2021 *)
  • Sage
    [lucas_number2(n,19,1) for n in range(0,20)] # Zerinvary Lajos, Jun 27 2008

Formula

a(n)=19*a(n-1)-a(n-2), n >= 1; a(-1)=19, a(0)=2.
a(n) = S(n, 19) - S(n-2, 19) = 2*T(n, 19/2) with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. S(n, 19)=A078368(n). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, case. See A049310 and A053120.
G.f.: (2-19*x)/(1-19*x+x^2).
a(n) = ap^n + am^n, with ap := (19+sqrt(357))/2 and am := (19-sqrt(357))/2.

A090729 a(n) = 21a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 21.

Original entry on oeis.org

2, 21, 439, 9198, 192719, 4037901, 84603202, 1772629341, 37140612959, 778180242798, 16304644485799, 341619353958981, 7157701788652802, 149970118207749861, 3142214780574094279, 65836540273848229998
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 18 2004

Keywords

Comments

A Chebyshev T-sequence with Diophantine property.
a(n) gives the general (nonnegative integer) solution of the Pell equation a^2 - 437*b^2 =+4 with companion sequence b(n)=A092499(n), n>=0.

References

  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).

Crossrefs

Cf. A085985.
a(n)=sqrt(4 + 437*A092499(n)^2), n>=1, (Pell equation d=437, +4).
Cf. A077428, A078355 (Pell +4 equations).

Programs

  • Mathematica
    a[0] = 2; a[1] = 21; a[n_] := 21a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *)
  • Sage
    [lucas_number2(n,21,1) for n in range(0,20)] # Zerinvary Lajos, Jun 27 2008

Formula

a(n) = S(n, 21) - S(n-2, 21) = 2*T(n, 21/2) with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. S(n, 21)=A092499(n+1). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, case. See A049310 and A053120.
a(n) = ap^n + am^n, with ap := (21+sqrt(437))/2 and am := (21-sqrt(437))/2.
G.f.: (2-21*x)/(1-21*x+x^2).

Extensions

Chebyshev and Pell comments from Wolfdieter Lang, Sep 10 2004

A090251 a(n) =29a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 29.

Original entry on oeis.org

2, 29, 839, 24302, 703919, 20389349, 590587202, 17106639509, 495501958559, 14352450158702, 415725552643799, 12041688576511469, 348793243166188802, 10102962363242963789, 292637115290879761079, 8476373381072270107502
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 24 2004

Keywords

Comments

a(n+1)/a(n) converges to ((29+sqrt(837))/2) =28.9654761... Lim a(n)/a(n+1) as n approaches infinity = 0.0345238... =2/(29+sqrt(837)) =(29-sqrt(837))/2. Lim a(n+1)/a(n) as n approaches infinity = 28.9654761... = (29+sqrt(837))/2=2/(29-sqrt(837)). Lim a(n)/a(n+1) = 29 - Lim a(n+1)/a(n).
A Chebyshev T-sequence with a Diophantine property.
a(n) gives the general (nonnegative integer) solution of the Pell equation a^2 - 93*(3*b)^2 =+4 with companion sequence b(n)=A097782(n+1), n>=0.

Examples

			a(4) =703919 = 29a(3) - a(2) = 29*24302 - 839= ((29+sqrt(837))/2)^4 + ((29-sqrt(837))/2)^4 = 703918.99999857 + 0.00000142 =703919.
(x,y) = (2;0), (29;1), (839;29), (24302,840), ..., give the
nonnegative integer solutions to x^2 - 93*(3*y)^2 =+4.
		

References

  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).

Crossrefs

a(n)=sqrt(4 + 93*(3*A097782(n-1))^2), n>=1.
Cf. A077428, A078355 (Pell +4 equations).
Cf. A090248 for 2*T(n, 27/2).

Programs

  • Mathematica
    a[0] = 2; a[1] = 29; a[n_] := 29a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *)
    LinearRecurrence[{29,-1},{2,29},30] (* Harvey P. Dale, May 28 2013 *)
  • Sage
    [lucas_number2(n,29,1) for n in range(0,16)] # Zerinvary Lajos, Jun 27 2008

Formula

a(n) =29a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 29. a(n) = ((29+sqrt(837))/2)^n + ((29-sqrt(837))/2)^n, (a(n))^2 =a(2n)+2.
a(n) = S(n, 29) - S(n-2, 29) = 2*T(n, 29/2) with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. S(n, 27)=A097781(n). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, kind. See A049310 and A053120.
a(n) = ap^n + am^n, with ap := (29+3*sqrt(93))/2 and am := (29-3*sqrt(93))/2.
G.f.: (2-29*x)/(1-29*x+x^2).

Extensions

More terms from Robert G. Wilson v, Jan 30 2004
Chebyshev and Pell comments from Wolfdieter Lang, Aug 31 2004

A078361 Minimal positive solution a(n) of Pell equation a(n)^2 - D(n)*b(n)^2 = +4 or -4 with D(n)=A077425(n). The companion sequence is b(n)=A077058(n).

Original entry on oeis.org

1, 3, 8, 5, 5, 46, 12, 64, 7, 7, 302, 39, 16, 25, 2136, 9, 9, 1000, 29, 11208, 20, 82, 261, 1552, 11, 11, 33710, 173, 3488, 190, 24, 61, 4354, 213, 23550, 13, 13, 124846, 1305, 136, 110, 3528264, 28, 1030190, 43, 93102, 73, 7688126, 15, 15, 46312, 77
Offset: 1

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

Computed from Perron's table (see reference p. 108, for n = 1..28) which gives the minimal x,y values for the Diophantine eq. x^2 - x*y - ((D(n)-1)/4)*y^2= +1, resp., -1 if D(n)=A077425(n), resp, D(n)=A077425(n) and D(n) also in A077426 (this second case excludes in Perron's table the D values with a 'Teilnenner' in brackets).
The conversion from the x,y values of Perron's table to the minimal a=a(n) and b=b(n) solutions is a(n)=2*x(n)-y(n) and b(n)=y(n). If D(n)=A077425(n) is not in A077426 then the equation with -4 has no solution and a(n) and b(n) are the minimal solutions of the a(n)^2 - D(n)*b(n)^2 = +4 equation. If D(n)=A077425(n) is in A077426 then the a(n) and b(n) values are the minimal solution of the a(n)^2 - D(n)*b(n)^2 = -4 equation. In this case a(+,n)= a(n)^2+2 and b(+,n)=a(n)*b(n) are the minimal solution of a^2 - D(n)*b^2 = +4.
For Pell equation a^2 - D*b^2 = +4, see A077428 and A078355. For Pell equation a^2 - D*b^2 = -4, see A078356 and A078357.

Examples

			29=D(5)=A077425(5) is A077426(4), hence a(5)=5 and b(5)=A077058(5)=1 solve a^2 - 29*b^2=-4 minimally and a(+,5)=a(5)^2+2=27 with b(+,5)=a(5)*b(5)=5*1=5 solve a^2 - 29*b^2=+4 minimally. See also A077428 with companion A078355.
21=D(4)=A077425(4) is not in A077426, hence a(4)=5 and b(4)=A077058(4)=1 give the solution with minimal positive b of a^2 - 21*b^2=+4.
		

References

  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).

Extensions

More terms from Matthew Conroy, Apr 20 2003

A240469 Values k where the maximum number of distinct rational solutions to x^2 - Dy^2 = t, 0 < D <= k, 0 < t <= k, achieves a new record.

Original entry on oeis.org

1, 2, 7, 10, 17, 32, 73, 144, 241, 336, 360, 720, 1080, 1260
Offset: 1

Views

Author

Ralf Stephan, Apr 06 2014

Keywords

Comments

Record values are in A240470.

Examples

			All Diophantine equations x^2 - Dy^2 = t, 0 < D <= 16, 0 < t <= 16, D squarefree, have fewer than 4 distinct solutions; the first with 4 solutions is x^2 - 17y^2 = 16 with the solutions (x,y) = (9/2,1/2), (21,5), (4,0), (13,3), so 17 is in the sequence.
		

Crossrefs

Programs

  • PARI
    { r(l,k)=if(!issquarefree(l)||!polisirreducible(z^2-l),return(0));v=bnfisintnorm(bnfinit(z^2-l), k);if(!#v,return(0));s=0;for(k=1,#v,p=v[k];a=polcoeff(p,0);b=polcoeff(p,1);f=1;for(l=k+1,#v,p=v[l];aa=polcoeff(p,0);bb=polcoeff(p,1);if(abs(a)==abs(aa)&&abs(b)==abs(bb),f=0;break));s=s+f);s
    m=0;n=0;while(1,n=n+1;res=0;for(l=1,n,rr=r(l,n);if(rr>res,res=rr));for(k=1,n-1,rr=r(n,k);if(rr>res,res=rr));if(res>m,m=res;print(n,","))) }
Previous Showing 11-20 of 20 results.