cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A372684 Least k such that prime(k) >= 2^n.

Original entry on oeis.org

1, 3, 5, 7, 12, 19, 32, 55, 98, 173, 310, 565, 1029, 1901, 3513, 6543, 12252, 23001, 43391, 82026, 155612, 295948, 564164, 1077872, 2063690, 3957810, 7603554, 14630844, 28192751, 54400029, 105097566, 203280222, 393615807, 762939112, 1480206280, 2874398516, 5586502349
Offset: 1

Views

Author

Gus Wiseman, May 30 2024

Keywords

Examples

			The numbers prime(a(n)) together with their binary expansions and binary indices begin:
        2:                       10 ~ {2}
        5:                      101 ~ {1,3}
       11:                     1011 ~ {1,2,4}
       17:                    10001 ~ {1,5}
       37:                   100101 ~ {1,3,6}
       67:                  1000011 ~ {1,2,7}
      131:                 10000011 ~ {1,2,8}
      257:                100000001 ~ {1,9}
      521:               1000001001 ~ {1,4,10}
     1031:              10000000111 ~ {1,2,3,11}
     2053:             100000000101 ~ {1,3,12}
     4099:            1000000000011 ~ {1,2,13}
     8209:           10000000010001 ~ {1,5,14}
    16411:          100000000011011 ~ {1,2,4,5,15}
    32771:         1000000000000011 ~ {1,2,16}
    65537:        10000000000000001 ~ {1,17}
   131101:       100000000000011101 ~ {1,3,4,5,18}
   262147:      1000000000000000011 ~ {1,2,19}
   524309:     10000000000000010101 ~ {1,3,5,20}
  1048583:    100000000000000000111 ~ {1,2,3,21}
  2097169:   1000000000000000010001 ~ {1,5,22}
  4194319:  10000000000000000001111 ~ {1,2,3,4,23}
  8388617: 100000000000000000001001 ~ {1,4,24}
		

Crossrefs

The opposite (greatest k such that prime(k) <= 2^n) is A007053.
Positions of first appearances in A035100.
The distance from prime(a(n)) to 2^n is A092131.
Counting zeros instead of all bits gives A372474, firsts of A035103.
Counting ones instead of all bits gives A372517, firsts of A014499.
For primes between powers of 2:
- sum A293697
- length A036378
- min A104080 or A014210
- max A014234, delta A013603
For squarefree numbers between powers of 2:
- sum A373123
- length A077643, run-lengths of A372475
- min A372683, delta A373125, indices A372540
- max A372889, delta A373126, indices A143658
For squarefree numbers between primes:
- sum A373197
- length A373198 = A061398 - 1
- min A000040
- max A112925, opposite A112926

Programs

  • Mathematica
    Table[PrimePi[If[n==1,2,NextPrime[2^n]]],{n,30}]
  • PARI
    a(n) = primepi(nextprime(2^n)); \\ Michel Marcus, May 31 2024

Formula

a(n>1) = A007053(n) + 1.
a(n) = A000720(A104080(n)).
prime(a(n)) = A104080(n).
prime(a(n)) - 2^n = A092131(n).

Extensions

More terms from Michel Marcus, May 31 2024

A373409 Length of the n-th maximal antirun of nonsquarefree numbers differing by more than one.

Original entry on oeis.org

2, 6, 2, 5, 2, 1, 6, 4, 2, 7, 1, 5, 2, 2, 1, 4, 4, 3, 6, 2, 2, 4, 7, 5, 7, 1, 1, 6, 6, 2, 3, 4, 7, 3, 3, 5, 1, 3, 1, 3, 2, 2, 3, 5, 5, 7, 1, 5, 7, 5, 1, 8, 4, 2, 5, 2, 2, 3, 3, 1, 7, 3, 4, 7, 1, 5, 2, 5, 2, 6, 7, 6, 7, 5, 1, 2, 3, 5, 6, 4, 1, 3, 5, 7, 2, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2024

Keywords

Comments

An antirun of a sequence (in this case A013929) is an interval of positions at which consecutive terms differ by more than one.
Conjecture: The maximum is 9, and there is no antirun of more than 9 nonsquarefree numbers. Confirmed up to 100,000,000.

Examples

			Row-lengths of:
   4   8
   9  12  16  18  20  24
  25  27
  28  32  36  40  44
  45  48
  49
  50  52  54  56  60  63
  64  68  72  75
  76  80
  81  84  88  90  92  96  98
  99
The first maximal antirun of length 9 is the following, shown with prime indices:
  6345: {2,2,2,3,15}
  6348: {1,1,2,9,9}
  6350: {1,3,3,31}
  6352: {1,1,1,1,78}
  6354: {1,2,2,71}
  6356: {1,1,4,49}
  6358: {1,5,7,7}
  6360: {1,1,1,2,3,16}
  6363: {2,2,4,26}
		

Crossrefs

Positions of first appearances are A373573, sorted A373574.
Functional neighbors: A027833, A053797, A068781, A373127, A373403, A373410, A373412.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    Length/@Split[Select[Range[1000],!SquareFreeQ[#]&],#1+1!=#2&]//Most

A373400 Numbers k such that the k-th maximal run of composite numbers has length different from all prior maximal runs. Sorted positions of first appearances in A176246 (or A046933 shifted).

Original entry on oeis.org

1, 3, 8, 23, 29, 33, 45, 98, 153, 188, 216, 262, 281, 366, 428, 589, 737, 1182, 1830, 1878, 2190, 2224, 3076, 3301, 3384, 3426, 3643, 3792, 4521, 4611, 7969, 8027, 8687, 12541, 14356, 14861, 15782, 17005, 19025, 23282, 30801, 31544, 33607, 34201, 34214, 38589
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2024

Keywords

Comments

The unsorted version is A073051.
A run of a sequence (in this case A002808) is an interval of positions at which consecutive terms differ by one.

Examples

			The maximal runs of composite numbers begin:
   4
   6
   8   9  10
  12
  14  15  16
  18
  20  21  22
  24  25  26  27  28
  30
  32  33  34  35  36
  38  39  40
  42
  44  45  46
  48  49  50  51  52
  54  55  56  57  58
  60
  62  63  64  65  66
  68  69  70
  72
  74  75  76  77  78
  80  81  82
  84  85  86  87  88
  90  91  92  93  94  95  96
  98  99 100
The a(n)-th rows are:
   4
   8   9  10
  24  25  26  27  28
  90  91  92  93  94  95  96
 114 115 116 117 118 119 120 121 122 123 124 125 126
 140 141 142 143 144 145 146 147 148
 200 201 202 203 204 205 206 207 208 209 210
		

Crossrefs

The unsorted version is A073051, firsts of A176246.
For squarefree runs we have the triple (1,3,5), firsts of A120992.
For prime runs we have the triple (1,2,3), firsts of A175632.
For squarefree antiruns we have A373128, firsts of A373127.
For nonsquarefree runs we have A373199 (assuming sorted), firsts of A053797.
For prime antiruns we have A373402, unsorted A373401, firsts of A027833.
For composite runs we have the triple (1,2,7), firsts of A373403.
A000040 lists the primes, differences A001223.
A002808 lists the composite numbers, differences A073783.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.

Programs

  • Mathematica
    t=Length/@Split[Select[Range[10000],CompositeQ],#1+1==#2&]//Most;
    Select[Range[Length[t]],FreeQ[Take[t,#-1],t[[#]]]&]

A373128 Least k such that the k-th maximal antirun of squarefree numbers has length n. Position of first appearance of n in A373127.

Original entry on oeis.org

1, 3, 10, 8, 19, 162, 1853, 2052, 1633, 26661, 46782, 3138650, 1080330
Offset: 1

Views

Author

Gus Wiseman, Jun 08 2024

Keywords

Comments

An antirun of a sequence (in this case A005117) is an interval of positions at which consecutive terms differ by more than one.

Examples

			The maximal antiruns of squarefree numbers begin:
   1
   2
   3   5
   6
   7  10
  11  13
  14
  15  17  19  21
  22
  23  26  29
  30
  31  33
  34
  35  37
The a(n)-th rows are:
    1
    3    5
   23   26   29
   15   17   19   21
   47   51   53   55   57
  483  485  487  489  491  493
For example, (23, 26, 29) is the first maximal antirun of 3 squarefree numbers, so a(3) = 10.
		

Crossrefs

For composite instead of squarefree we have A073051.
Positions of first appearances in A373127.
The version for nonsquarefree runs is A373199, firsts of A053797.
For prime instead of squarefree we have A373401, firsts of A027833.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    t=Length/@Split[Select[Range[10000],SquareFreeQ[#]&],#1+1!=#2&]//Most;
    spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[Max@@#]&];
    Table[Position[t,k][[1,1]],{k,spnm[t]}]

A373125 Difference between 2^n and the least squarefree number >= 2^n.

Original entry on oeis.org

0, 0, 1, 2, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 3, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, May 28 2024

Keywords

Crossrefs

For prime instead of squarefree we have A092131, opposite A013603.
For primes instead of powers of 2: A240474, A240473, A112926, A112925.
Difference between 2^n and A372683(n).
The opposite is A373126, delta of A372889.
A005117 lists squarefree numbers, first differences A076259.
A053797 gives lengths of gaps between squarefree numbers.
A061398 counts squarefree numbers between primes (exclusive).
A070939 or (preferably) A029837 gives length of binary expansion.
A077643 counts squarefree terms between powers of 2, run-lengths of A372475.
A143658 counts squarefree numbers up to 2^n.
Cf. A372473 (firsts of A372472), A372541 (firsts of A372433).
For primes between powers of 2:
- sum A293697 (except initial terms)
- length A036378
- min A104080 or A014210, indices A372684 (firsts of A035100)
- max A014234, delta A013603

Programs

  • Mathematica
    Table[NestWhile[#+1&,2^n,!SquareFreeQ[#]&]-2^n,{n,0,100}]

Formula

a(n) = A372683(n)-2^n. - R. J. Mathar, May 31 2024

A373126 Difference between 2^n and the greatest squarefree number <= 2^n.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1
Offset: 0

Views

Author

Gus Wiseman, May 29 2024

Keywords

Examples

			The greatest squarefree number <= 2^21 is 2097149, and 2^21 = 2097152, so a(21) = 3.
		

Crossrefs

For prime instead of squarefree we have A013603, opposite A092131.
For primes instead of powers of 2: A240474, A240473, A112926, A112925.
Difference between 2^n and A372889.
The opposite is A373125, delta of A372683.
A005117 lists squarefree numbers, first differences A076259.
A053797 gives lengths of gaps between squarefree numbers.
A061398 counts squarefree numbers between primes (exclusive).
A070939 or (preferably) A029837 gives length of binary expansion.
A077643 counts squarefree terms between powers of 2, run-lengths of A372475.
A143658 counts squarefree numbers up to 2^n.
Cf. A372473 (firsts of A372472), A372541 (firsts of A372433).
For primes between powers of 2:
- sum A293697 (except initial terms)
- length A036378
- min A104080 or A014210, indices A372684 (firsts of A035100)
- max A014234

Programs

  • Mathematica
    Table[2^n-NestWhile[#-1&,2^n,!SquareFreeQ[#]&],{n,0,100}]

Formula

a(n) = 2^n-A372889(n). - R. J. Mathar, May 31 2024

A373410 Minimum of the n-th maximal antirun of nonsquarefree numbers differing by more than one.

Original entry on oeis.org

4, 9, 25, 28, 45, 49, 50, 64, 76, 81, 99, 100, 117, 121, 125, 126, 136, 148, 153, 169, 172, 176, 189, 208, 225, 243, 244, 245, 261, 276, 280, 289, 297, 316, 325, 333, 343, 344, 351, 352, 361, 364, 369, 376, 388, 405, 424, 425, 441, 460, 476, 477, 496, 508, 513
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2024

Keywords

Comments

The maximum is given by A068781.
An antirun of a sequence (in this case A013929) is an interval of positions at which consecutive terms differ by more than one.
Consists of 4 and all nonsquarefree numbers n such that n - 1 is also nonsquarefree.

Examples

			Row-minima of:
   4   8
   9  12  16  18  20  24
  25  27
  28  32  36  40  44
  45  48
  49
  50  52  54  56  60  63
  64  68  72  75
  76  80
  81  84  88  90  92  96  98
  99
		

Crossrefs

Functional neighbors: A005381, A006512, A053806, A068781, A373408, A373409, A373412.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    First/@Split[Select[Range[100],!SquareFreeQ[#]&],#1+1!=#2&]

Formula

a(1) = 4; a(n>1) = A068781(n-1) + 1.

A373411 Sum of the n-th maximal antirun of squarefree numbers differing by more than one.

Original entry on oeis.org

1, 2, 8, 6, 17, 24, 14, 72, 22, 78, 30, 64, 34, 72, 38, 80, 42, 89, 263, 58, 120, 127, 66, 136, 70, 144, 151, 78, 161, 168, 86, 360, 94, 293, 102, 208, 106, 216, 110, 224, 114, 233, 241, 379, 130, 264, 271, 138, 280, 142, 288, 600, 312, 158, 648, 166, 510, 351
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2024

Keywords

Comments

The length of this antirun is given by A373127.
An antirun of a sequence (in this case A005117) is an interval of positions at which consecutive terms differ by more than one.

Examples

			Row-sums of:
   1
   2
   3  5
   6
   7 10
  11 13
  14
  15 17 19 21
  22
  23 26 29
  30
  31 33
  34
  35 37
  38
  39 41
  42
  43 46
  47 51 53 55 57
		

Crossrefs

The partial sums are a subset of A173143.
Functional neighbors: A007674, A373127 (firsts A373128, sorted firsts A373200), A373404, A373405, A373408, A373412, A373413.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    Total/@Split[Select[Range[100],SquareFreeQ],#1+1!=#2&]//Most

A373123 Sum of all squarefree numbers from 2^(n-1) to 2^n - 1.

Original entry on oeis.org

1, 5, 18, 63, 218, 891, 3676, 15137, 60580, 238672, 953501, 3826167, 15308186, 61204878, 244709252, 979285522, 3917052950, 15664274802, 62663847447, 250662444349, 1002632090376, 4010544455838, 16042042419476, 64168305037147, 256675237863576
Offset: 1

Views

Author

Gus Wiseman, May 27 2024

Keywords

Examples

			This is the sequence of row sums of A005117 treated as a triangle with row-lengths A077643:
   1
   2   3
   5   6   7
  10  11  13  14  15
  17  19  21  22  23  26  29  30  31
  33  34  35  37  38  39  41  42  43  46  47  51  53  55  57  58  59  61  62
		

Crossrefs

Counting all numbers (not just squarefree) gives A010036.
For the sectioning of A005117:
Row-lengths are A077643, partial sums A143658.
First column is A372683, delta A373125, indices A372540, firsts of A372475.
Last column is A372889, delta A373126, indices A143658, diffs A077643.
For primes instead of powers of two:
- sum A373197
- length A373198 = A061398 - 1
- maxima A112925, opposite A112926
For prime instead of squarefree:
- sum A293697 (except initial terms)
- length A036378
- min A104080 or A014210, indices A372684 (firsts of A035100)
- max A014234, delta A013603
A000120 counts ones in binary expansion (binary weight), zeros A080791.
A005117 lists squarefree numbers, first differences A076259.
A030190 gives binary expansion, reversed A030308.
A070939 or (preferably) A029837 gives length of binary expansion.
Cf. A372473 (firsts of A372472), A372541 (firsts of A372433).

Programs

  • Mathematica
    Table[Total[Select[Range[2^(n-1),2^n-1],SquareFreeQ]],{n,10}]
  • PARI
    a(n) = my(s=0); forsquarefree(i=2^(n-1), 2^n-1, s+=i[1]); s; \\ Michel Marcus, May 29 2024

A373413 Sum of the n-th maximal run of squarefree numbers.

Original entry on oeis.org

6, 18, 21, 42, 17, 19, 66, 26, 90, 102, 114, 126, 93, 51, 53, 55, 174, 123, 198, 210, 147, 234, 165, 258, 89, 91, 282, 97, 306, 318, 330, 342, 237, 245, 127, 390, 267, 414, 426, 291, 149, 151, 309, 474, 161, 163, 498, 170, 347, 534, 546, 558, 381, 582, 197
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2024

Keywords

Comments

The length of this run is given by A120992.
A run of a sequence (in this case A005117) is an interval of positions at which consecutive terms differ by one.

Examples

			Row-sums of:
   1   2   3
   5   6   7
  10  11
  13  14  15
  17
  19
  21  22  23
  26
  29  30  31
  33  34  35
  37  38  39
  41  42  43
  46  47
  51
  53
  55
  57  58  59
		

Crossrefs

The partial sums are a subset of A173143.
Functional neighbors: A054265, A072284, A120992, A373406, A373411, A373414, A373415.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    Total/@Split[Select[Range[100],SquareFreeQ],#1+1==#2&]//Most
Previous Showing 11-20 of 28 results. Next