cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-59 of 59 results.

A135247 a(n) = 3*a(n-1) + 2*a(n-2) - 6*a(n-3).

Original entry on oeis.org

1, 3, 11, 33, 103, 309, 935, 2805, 8431, 25293, 75911, 227733, 683263, 2049789, 6149495, 18448485, 55345711, 166037133, 498111911, 1494335733, 4483008223, 13449024669, 40347076055, 121041228165, 363123688591, 1089371065773, 3268113205511, 9804339616533
Offset: 0

Views

Author

Paul Curtz, Feb 15 2008

Keywords

Comments

This sequence interleaves A016133 and 3*A016133, see formulas. - Mathew Englander, Jan 08 2024
a(n) is the number of partitions of n into parts 1 (in three colors) and 2 (in two colors) where the order of colors matters. For example, the a(2)=11 such partitions (using parts 1, 1', 1'', 2, and 2') are 2, 2', 1+1, 1+1', 1+1'', 1'+1, 1'+1', 1'+1'', 1''+1, 1''+1', 1''+1''. For such partitions where the order of colors does not matter see A002624. - Joerg Arndt, Jan 18 2024

Crossrefs

Cf. A016133.

Programs

  • GAP
    a:=[1,3,11];; for n in [4..30] do a[n]:=3*a[n-1]+2*a[n-2]-6*a[n-3]; od; a; # G. C. Greubel, Nov 20 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-3*x-2*x^2+6*x^3) )); // G. C. Greubel, Nov 20 2019
    
  • Maple
    seq(coeff(series(1/(1-3*x-2*x^2+6*x^3), x, n+1), x, n), n = 0..30); # G. C. Greubel, Nov 20 2019
  • Mathematica
    LinearRecurrence[{3,2,-6},{1,3,11},30] (* Harvey P. Dale, Jun 27 2015 *)
  • PARI
    my(x='x+O('x^30)); Vec(1/(1-3*x-2*x^2+6*x^3)) \\ G. C. Greubel, Nov 20 2019
    
  • Sage
    def A135247_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/(1-3*x-2*x^2+6*x^3) ).list()
    A135247_list(30) # G. C. Greubel, Nov 20 2019
    

Formula

G.f.: 1/((1-3*x)*(1-2*x^2)). - G. C. Greubel, Oct 04 2016
From Mathew Englander, Jan 08 2024: (Start)
a(n) = A010684(n) * A016133(floor(n/2)).
a(n) = 3*a(n-1) + A077957(n) for n >= 1.
a(n) = (A000244(n+2) - A164073(n+3))/7.
(End)

Extensions

More terms from Harvey P. Dale, Jun 27 2015
Dropped two leading terms = 0. - Joerg Arndt, Jan 18 2024

A162666 a(n) = 20*a(n-1) - 98*a(n-2) for n > 1; a(0) = 1, a(1) = 10.

Original entry on oeis.org

1, 10, 102, 1060, 11204, 120200, 1306008, 14340560, 158822416, 1771073440, 19856872032, 223572243520, 2525471411264, 28599348360320, 324490768902528, 3687079238739200, 41941489422336256, 477496023050283520
Offset: 0

Views

Author

Klaus Brockhaus, Jul 20 2009

Keywords

Comments

Binomial transform of A147960. Tenth binomial transform of A077957.

Crossrefs

Programs

  • GAP
    a:=[1,10];; for n in [3..20] do a[n]:=20*a[n-1]-98*a[n-2]; od; a; # G. C. Greubel, Aug 27 2019
  • Magma
    [ n le 2 select 9*n-8 else 20*Self(n-1)-98*Self(n-2): n in [1..18] ];
    
  • Maple
    seq(coeff(series((1-10*x)/(1-20*x+98*x^2), x, n+1), x, n), n = 0..20); # G. C. Greubel, Aug 27 2019
  • Mathematica
    Union[Flatten[NestList[{#[[2]],20#[[2]]-98#[[1]]}&,{1,10},20]]]  (* Harvey P. Dale, Feb 25 2011 *)
    LinearRecurrence[{20,-98}, {1,10}, 20] (* G. C. Greubel, Aug 27 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1-10*x)/(1-20*x+98*x^2)) \\ G. C. Greubel, Aug 27 2019
    
  • Sage
    def A162666_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-10*x)/(1-20*x+98*x^2)).list()
    A162666_list(20) # G. C. Greubel, Aug 27 2019
    

Formula

a(n) = ((10+sqrt(2))^n + (10-sqrt(2))^n)/2.
G.f.: (1-10*x)/(1-20*x+98*x^2).
E.g.f.: exp(10*x)*cosh(sqrt(2)*x). - Ilya Gutkovskiy, Aug 11 2017

A178945 Expansion of x*(1-x)^2/( (1-2*x^2)*(1-2*x)^2).

Original entry on oeis.org

1, 2, 7, 16, 42, 96, 228, 512, 1160, 2560, 5648, 12288, 26656, 57344, 122944, 262144, 557184, 1179648, 2490624, 5242880, 11010560, 23068672, 48235520, 100663296, 209717248, 436207616, 905973760, 1879048192, 3892322304, 8053063680, 16643014656
Offset: 1

Views

Author

Gary W. Adamson, Dec 30 2010

Keywords

Examples

			(1, 4, 12, 32, 80, 192, 448, 1024,...) +
..(1, 0,..2,..0,..4,...0,...8,....0...) =
..(2, 4, 14, 32, 84, 192, 456, 1024,...). Then dividing the sum by 2 we obtain:
..(1, 2, 7, 16, 42, 96, 228,...).
		

Crossrefs

Cf. A000079, A001787, A077957, column k=2 of A290222.

Programs

  • Mathematica
    CoefficientList[Series[x (1-x)^2/((1-2x^2)(1-2x)^2),{x,0,50}],x] (* or *) LinearRecurrence[{4,-2,-8,8},{0,1,2,7},50] (* Harvey P. Dale, Dec 29 2023 *)

Formula

a(2n+1) = ( A001787(2n+1)+A077957(2n))/2.
a(2n) = A001787(2n)/2.
a(n) = 2^(n-2)*n + 2^(n/2-5/2)*(1-(-1)^n).
a(n) = +4*a(n-1) -2*a(n-2) -8*a(n-3) +8*a(n-4).
G.f.: x*(S(x)^2 + S(x^2))/2 where S(x) is the g.f. for A000079.

A206800 Riordan array (1/(1-3*x+x^2), x*(1-x)/(1-3*x+x^2)).

Original entry on oeis.org

1, 3, 1, 8, 5, 1, 21, 19, 7, 1, 55, 65, 34, 9, 1, 144, 210, 141, 53, 11, 1, 377, 654, 534, 257, 76, 13, 1, 987, 1985, 1905, 1111, 421, 103, 15, 1, 2584, 5911, 6512, 4447, 2041, 641, 134, 17, 1, 6765, 17345, 21557, 16837, 9038, 3440, 925, 169, 19, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 12 2012

Keywords

Examples

			Triangle begins :
1
3, 1
8, 5, 1
21, 19, 7, 1
55, 65, 34, 9, 1
144, 210, 141, 53, 11, 1
377, 654, 534, 257, 76, 13, 1
987, 1985, 1905, 1111, 421, 103, 15, 1
2584, 5911, 6512, 4447, 2041, 641, 134, 17, 1
6765, 17345, 21557, 16837, 9038, 3440, 925, 169, 19, 1
Triangle (0,3,-1/3,1/3,0,0,0,0,0,...) DELTA (1,0,-1/3,1/3,0,0,0,0,...) begins :
1
0, 1
0, 3, 1
0, 8, 5, 1
0, 21, 19, 7, 1
0, 55, 65, 34, 9, 1...
		

References

  • Subtriangle of the triangle given by (0, 3, -1/3, 1/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -1/3, 1/3, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
  • Antidiagonal sums are A072264(n).

Crossrefs

Formula

T(n,k) = 3*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1).
G.f.: 1/(1-(y+3)*x+(y+1)*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = (-1)^n* A015587(n+1), (-1)^n*A190953(n+1), (-1)^n*A015566(n+1), (-1)*A189800(n+1), (-1)^n*A015541(n+1), (-1)^n*A085939(n+1), (-1)^n*A015523(n+1), (-1)^n*A063727(n), (-1)^n*A006130(n), A077957(n), A000045(n+1), A000079(n), A001906(n+1), A007070(n), A116415(n), A084326(n+1), A190974(n+1), A190978(n+1), A190984(n+1), A190990(n+1), A190872(n) for x = -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively.

A108085 Triangle, read by rows, where T(0,0) = 1, T(n,k) = 2^n*T(n-1,k) - T(n-1,k-1).

Original entry on oeis.org

1, 2, -1, 8, -6, 1, 64, -56, 14, -1, 1024, -960, 280, -30, 1, 32768, -31744, 9920, -1240, 62, -1, 2097152, -2064384, 666624, -89280, 5208, -126, 1, 268435456, -266338304, 87392256, -12094464, 755904, -21336, 254, -1, 68719476736, -68451041280, 22638755840, -3183575040, 205605888, -6217920
Offset: 0

Views

Author

Gerald McGarvey, Jun 05 2005

Keywords

Comments

For n > 0, n-th row sum = Product_{i=1..n} (2^i - 1), i.e., A005329(n).
Triangle T(n,k), 0 <= k <= n, read by rows given by [2, 2, 8, 12, 32, 56, 128, 240, 512, ...] DELTA [-1, 0, -2, 0, -4, 0, -8, 0, -16, 0, -32, 0, ...] = A014236(first zero omitted)DELTA -A077957 where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 23 2006

Examples

			Triangle begins
     1;
     2,   -1;
     8,   -6,   1;
    64,  -56,  14,  -1;
  1024, -960, 280, -30, 1;
		

Programs

  • PARI
    t(n, k) = {if (k < 0, return (0)); if (n < k, return (0)); if (n == 0, return (1)); return (2^n*t(n-1,k) - t(n-1,k-1));}  \\ Michel Marcus, Apr 11 2013

A122742 Numbers of polypentagons with two connected internal vertices (see Cyvin et al. for precise definition).

Original entry on oeis.org

0, 0, 1, 3, 6, 16, 34, 80, 172, 384, 824, 1792, 3824, 8192, 17376, 36864, 77760, 163840, 343936, 720896, 1507072, 3145728, 6553088, 13631488, 28310528, 58720256, 121632768, 251658240, 520089600, 1073741824, 2214584320, 4563402752, 9395224576, 19327352832, 39728414720, 81604378624
Offset: 4

Views

Author

N. J. A. Sloane, Sep 24 2006

Keywords

Formula

G.f.: x^6*(x-1)*(2*x^3-4*x^2+1) / ((2*x-1)^2*(2*x^2-1)). - Colin Barker, Aug 29 2013
a(n) = A001787(n+1)/256 - 2^(n-7) - A077957(n)/16, n>6. - R. J. Mathar, Jul 26 2019

A191897 Coefficients of the Z(n,x) polynomials; Z(0,x) = 1, Z(1,x) = x and Z(n,x) = x*Z(n-1,x) - 2*Z(n-2,x), n >= 2.

Original entry on oeis.org

1, 1, 0, 1, 0, -2, 1, 0, -4, 0, 1, 0, -6, 0, 4, 1, 0, -8, 0, 12, 0, 1, 0, -10, 0, 24, 0, -8, 1, 0, -12, 0, 40, 0, -32, 0, 1, 0, -14, 0, 60, 0, -80, 0, 16, 1, 0, -16, 0, 84, 0, -160, 0, 80, 0, 1, 0, -18, 0, 112, 0, -280, 0, 240, 0, -32
Offset: 0

Views

Author

Paul Curtz, Jun 19 2011

Keywords

Comments

The coefficients of the Z(n,x) polynomials by decreasing exponents, see the formulas, define this triangle.

Examples

			The first few rows of the coefficients of the Z(n,x) are
  1;
  1,    0;
  1,    0,   -2;
  1,    0,   -4,    0;
  1,    0,   -6,    0,    4;
  1,    0,   -8,    0,   12,    0;
  1,    0,  -10,    0,   24,    0,   -8;
  1,    0,  -12,    0,   40,    0,  -32,    0;
  1,    0,  -14,    0,   60,    0,  -80,    0,   16;
  1,    0,  -16,    0,   84,    0, -160,    0,   80,    0;
		

Crossrefs

Row sums: A107920(n+1). Main diagonal: A077966(n).
Z(n,x=1) = A107920(n+1), Z(n,x=2) = A009545(n+1),
Z(n,x=3) = A000225(n+1), Z(n,x=4) = A007070(n),
Z(n,x=5) = A107839(n), Z(n,x=6) = A154244(n),
Z(n,x=7) = A186446(n), Z(n,x=8) = A190975(n+1),
Z(n,x=9) = A190979(n+1), Z(n,x=10) = A190869(n+1).
Row sum without sign: A113405(n+1).

Programs

  • Maple
    nmax:=10: Z(0, x):=1 : Z(1, x):=x: for n from 2 to nmax do Z(n, x) := x*Z(n-1, x) - 2*Z(n-2, x) od: for n from 0 to nmax do for k from 0 to n do T(n, k) := coeff(Z(n, x), x, n-k) od: od: seq(seq(T(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Jun 27 2011, revised Nov 29 2012
  • Mathematica
    a[n_, k_] := If[OddQ[k], 0, 2^(k/2)*Coefficient[ ChebyshevU[n, x/2], x, n-k]]; Flatten[ Table[ a[n, k], {n, 0, 10}, {k, 0, n}]] (* Jean-François Alcover, Aug 02 2012, from 2nd formula *)

Formula

Z(0,x) = 1, Z(1,x) = x and Z(n,x) = x*Z(n-1,x) - 2*Z(n-2,x), n >= 2.
a(n,k) = A077957(k) * A053119(n,k). - Paul Curtz, Sep 30 2011

Extensions

Edited and information added by Johannes W. Meijer, Jun 27 2011

A208459 Triangle T_x = T(n,k) given by (0, 1/x, 1-1/x, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (x, 1/x-1, -1/x, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938, for x = 0.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 0, 1, 0, -1, 0, 1, 0, 1, 2, 0, 1, 0, 2, 0, -3, 0, 1, 0, 3, -1, 0, 5, 0, 1, 0, 4, -2, 3, 2, -8, 0, 1, 0, 5, -3, 7, -2, -5, 13, 0, 1, 0, 6, -4, 12, -8, 2, 12, -21, 0, 1, 0, 7, -5, 18, -16, 15, 3, -25, 34
Offset: 0

Views

Author

Philippe Deléham, Feb 27 2012

Keywords

Comments

Triangle T_x : T_1 = A103631, T_2 = A208343, T_3 = A208345.

Examples

			Triangle begins :
1
0, 0
0, 1, 1
0, 1, 0, -1
0, 1, 0, 1, 2
0, 1, 0, 2, 0, -3
0, 1, 0, 3, -1, 0, 5
0, 1, 0, 4, -2, 3, 2, -8
0, 1, 0, 5, -3, 7, -2, -5, 13
0, 1, 0, 6, -4, 12, -8, 2, 12, -21
0, 1, 0, 7, -5, 18, -16, 15, 3, -25, 34
		

Crossrefs

Cf. A103631, A208343, A208345, A000045 (Fibonacci)

Formula

T(n,k) = T(n-1,k) - T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2) with T(0,0) = 1 T(1,0) = 0, T(1,1) = 0, T(n,k) = 0 if k<0 or if k>n.
G.f.: (1-x+y*x)/(1-x+y*x- y^2*x^2-y*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = 12*A015548(n-1), 6*A085939(n-1), A106434(n), A000007(n), A000007(n), A077957(n), (-1)^n*A102901(n) for x = -4, -3, -2, -1, 0, 1, 2 respectively.
Sm_{k, 0<=k<=n} T(n,k)*x^(n-k) = A000007(n), A034834(n-1), A077957(n), A052533(n), (-1)^n*A086344(n) for x = -1, 0, 1, 2, 3 respectively.

A235501 Riordan array (1/(1-2*x^2), x/(1-x)).

Original entry on oeis.org

1, 0, 1, 2, 1, 1, 0, 3, 2, 1, 4, 3, 5, 3, 1, 0, 7, 8, 8, 4, 1, 8, 7, 15, 16, 12, 5, 1, 0, 15, 22, 31, 28, 17, 6, 1, 16, 15, 37, 53, 59, 45, 23, 7, 1, 0, 31, 52, 90, 112, 104, 68, 30, 8, 1, 32, 31, 83, 142, 202, 216, 172, 98, 38, 9, 1, 0, 63, 114, 225
Offset: 0

Views

Author

Philippe Deléham, Jan 11 2014

Keywords

Comments

Row sums are A007179(n+1).

Examples

			Triangle begins (0<=k<=n):
1
0, 1
2, 1, 1
0, 3, 2, 1
4, 3, 5, 3, 1
0, 7, 8, 8, 4, 1
8, 7, 15, 16, 12, 5, 1
0, 15, 22, 31, 28, 17, 6, 1
		

Crossrefs

Cf. Columns: A077957, A052551, A077866.
Diagonals: A000012, A001477, A022856.
Cf. Similar sequences: A059260, A191582.

Formula

T(n,n)=1, T(2n,0)=2^n, T(2n+1,0)=0, T(n,k)=T(n-1,k-1)+T(n-1,k) for 0
T(n,k)=T(n-1,k)+T(n-1,k-1)+2*T(n-2,k)-T(n-3,k)-2*T(n-3,k-1), T(0,0)=1, T(1,0)=0, T(1,1)=1, T(n,k)=0 if k<0 or if k>n.
T(n,n)=1, T(n+1,n)=n, T(n+2,n)=n*(n+1)/2 + 2.
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(3*x + 2*x^2/2! + x^3/3!) = 3*x + 8*x^2/2! + 16*x^3/3! + 28*x^4/4! + 45*x^5/5! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 22 2014
Previous Showing 51-59 of 59 results.