A318716
Heinz numbers of strict integer partitions with relatively prime parts in which no two parts are relatively prime.
Original entry on oeis.org
2, 17719, 40807, 43381, 50431, 74269, 83143, 101543, 105703, 116143, 121307, 123469, 139919, 140699, 142883, 171613, 181831, 185803, 191479, 203557, 205813, 211381, 213239, 215267, 219271, 246703, 249587, 249899, 279371, 286897, 289007, 296993, 300847, 303949
Offset: 1
The sequence of strict integer partitions with Heinz numbers in the sequence begins: (1), (15,10,6), (21,14,6), (20,15,6), (15,12,10), (45,10,6), (18,15,10).
Cf.
A078374,
A289509,
A302569,
A302696,
A302796,
A302797,
A303140,
A303280,
A303282,
A303283,
A305713,
A318715,
A318718,
A318719.
-
Select[Range[100000],With[{m=PrimePi/@FactorInteger[#][[All,1]]},And[SquareFreeQ[#],GCD@@m==1,And@@(GCD[##]>1&)@@@Select[Tuples[m,2],Less@@#&]]]&]
A324748
Number of strict integer partitions of n containing all prime indices of the parts.
Original entry on oeis.org
1, 1, 0, 1, 0, 1, 1, 1, 0, 2, 1, 2, 3, 2, 2, 4, 3, 4, 3, 5, 6, 9, 8, 7, 8, 11, 12, 13, 15, 17, 22, 22, 20, 28, 31, 32, 36, 41, 43, 53, 53, 59, 70, 76, 77, 89, 99, 108, 124, 135, 139, 160, 172, 188, 209, 229, 243, 274, 298, 315, 353, 391, 417, 457, 496, 538, 588
Offset: 0
The first 15 terms count the following integer partitions.
1: (1)
3: (2,1)
5: (4,1)
6: (3,2,1)
7: (4,2,1)
9: (8,1)
9: (6,2,1)
10: (4,3,2,1)
11: (8,2,1)
11: (5,3,2,1)
12: (9,2,1)
12: (7,4,1)
12: (6,3,2,1)
13: (8,4,1)
13: (6,4,2,1)
14: (8,3,2,1)
14: (7,4,2,1)
15: (12,2,1)
15: (9,3,2,1)
15: (8,4,2,1)
15: (5,4,3,2,1)
An example for n = 6 is (20,18,11,5,3,2,1), with prime indices:
20: {1,1,3}
18: {1,2,2}
11: {5}
5: {3}
3: {2}
2: {1}
1: {}
All of these prime indices {1,2,3,5} belong to the partition, as required.
Cf.
A000720,
A001462,
A007097,
A074971,
A078374,
A112798,
A276625,
A279861,
A290689,
A290760,
A305713.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&SubsetQ[#,PrimePi/@First/@Join@@FactorInteger/@DeleteCases[#,1]]&]],{n,0,30}]
A366844
Number of strict integer partitions of n into odd relatively prime parts.
Original entry on oeis.org
0, 1, 0, 0, 1, 0, 1, 0, 2, 1, 2, 1, 2, 2, 3, 3, 5, 4, 4, 5, 6, 7, 8, 8, 9, 11, 12, 12, 15, 16, 15, 19, 23, 23, 26, 28, 30, 34, 37, 38, 44, 48, 48, 56, 62, 63, 72, 77, 82, 92, 96, 102, 116, 124, 128, 142, 155, 162, 178, 191, 200, 222, 236, 246, 276, 291, 303, 334
Offset: 0
The a(n) partitions for n = 1, 8, 14, 17, 16, 20, 21:
(1) (5,3) (9,5) (9,5,3) (9,7) (11,9) (9,7,5)
(7,1) (11,3) (9,7,1) (11,5) (13,7) (11,7,3)
(13,1) (11,5,1) (13,3) (17,3) (11,9,1)
(13,3,1) (15,1) (19,1) (13,5,3)
(7,5,3,1) (9,7,3,1) (13,7,1)
(11,5,3,1) (15,5,1)
(17,3,1)
This is the relatively prime case of
A000700.
The pairwise coprime version is the odd-part case of
A007360.
The halved even version is
A078374 aerated.
The complement is counted by the strict case of
A366852, with evens
A018783.
A113685 counts partitions by sum of odd parts, rank statistic
A366528.
A366842 counts partitions whose odd parts have a common divisor > 1.
Cf.
A007359,
A047967,
A055922,
A066208,
A116598,
A239261,
A302697,
A337485,
A365067,
A366845,
A366848.
-
Table[Length[Select[IntegerPartitions[n], And@@OddQ/@#&&UnsameQ@@#&&GCD@@#==1&]],{n,0,30}]
-
from math import gcd
from sympy.utilities.iterables import partitions
def A366844(n): return sum(1 for p in partitions(n) if all(d==1 for d in p.values()) and all(d&1 for d in p) and gcd(*p)==1) # Chai Wah Wu, Oct 30 2023
A300275
G.f.: 1 + Sum_{n>=1} a(n)*x^n/(1 - x^n) = Product_{n>=1} 1/(1 - x^n)^n.
Original entry on oeis.org
1, 2, 5, 10, 23, 40, 85, 147, 276, 474, 858, 1421, 2484, 4079, 6850, 11137, 18333, 29277, 47329, 74768, 118703, 185614, 290782, 449568, 696009, 1066258, 1632376, 2479057, 3759611, 5661568, 8512308, 12722132, 18974109, 28157619, 41690937, 61453929, 90379783
Offset: 1
-
with(numtheory):
b:= proc(n) option remember; `if`(n=0, 1, add(
b(n-j)*sigma[2](j), j=1..n)/n)
end:
a:= n-> add(b(d)*mobius(n/d), d=divisors(n)):
seq(a(n), n=1..40); # Alois P. Heinz, Jun 21 2018
-
nn = 37; f[x_] := 1 + Sum[a[n] x^n/(1 - x^n), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - Product[1/(1 - x^n)^n, {n, 1, nn}], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten
s[n_] := SeriesCoefficient[Product[1/(1 - x^k)^k, {k, 1, n}], {x, 0, n}]; a[n_] := Sum[MoebiusMu[n/d] s[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 37}]
A303283
Squarefree numbers whose prime indices have no common divisor other than 1 but are not pairwise coprime.
Original entry on oeis.org
42, 78, 105, 114, 130, 174, 182, 195, 210, 222, 230, 231, 258, 266, 285, 318, 345, 357, 366, 370, 390, 406, 426, 429, 435, 455, 462, 470, 474, 483, 494, 518, 534, 546, 555, 570, 598, 602, 606, 610, 627, 638, 642, 645, 651, 663, 665, 678, 690, 705, 714, 715
Offset: 1
The sequence of strict integer partitions whose Heinz numbers belong to this sequence begins (4,2,1), (6,2,1), (4,3,2), (8,2,1), (6,3,1), (10,2,1), (6,4,1), (6,3,2), (4,3,2,1), (12,2,1), (9,3,1), (5,4,2), (14,2,1), (8,4,1), (8,3,2), (16,2,1), (9,3,2), (7,4,2), (18,2,1), (12,3,1), (6,3,2,1).
Cf.
A000837,
A001222,
A018783,
A051424,
A056239,
A078374,
A168532,
A289508,
A289509,
A296150,
A298748,
A300486,
A302569,
A302696,
A302796,
A303138,
A303139,
A303140,
A303282.
-
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[400],SquareFreeQ[#]&&!CoprimeQ@@primeMS[#]&&GCD@@primeMS[#]===1&]
A318720
Numbers k such that there exists a strict relatively prime factorization of k in which no pair of factors is relatively prime.
Original entry on oeis.org
900, 1764, 1800, 2700, 3528, 3600, 4356, 4500, 4900, 5292, 5400, 6084, 6300, 7056, 7200, 8100, 8712, 8820, 9000, 9800, 9900, 10404, 10584, 10800, 11025, 11700, 12100, 12168, 12348, 12600, 12996, 13068, 13500, 14112, 14400, 14700, 15300, 15876, 16200, 16900
Offset: 1
900 is in the sequence because the factorization 900 = (6*10*15) is relatively prime (since the GCD of (6,10,15) is 1) but each of the pairs (6,10), (6,15), (10,15) has a common divisor > 1. Larger examples are:
1800 = (6*15*20) = (10*12*15).
9900 = (6*10*165) = (6*15*110) = (10*15*66).
5400 = (6*20*45) = (10*12*45) = (10*15*36) = (15*18*20).
60 is not in the sequence because all its possible factorizations (4 * 15, 3 * 4 * 5, etc.) contain at least one pair that is coprime, if not more than one prime.
Cf.
A001055,
A001221,
A001222,
A007716,
A045778,
A051185,
A078374,
A281116,
A303140,
A303283,
A305843,
A305854,
A317748,
A318715,
A318717,
A318721.
-
strfacs[n_] := If[n <= 1, {{}}, Join@@Table[(Prepend[#1, d] &)/@Select[strfacs[n/d], Min@@#1 > d &], {d, Rest[Divisors[n]]}]]; Select[Range[10000], Function[n, Select[strfacs[n], And[GCD@@# == 1, And@@(GCD[##] > 1 &)@@@Select[Tuples[#, 2], Less@@# &]] &] != {}]]
Select[Range[20000], Count[FactorInteger[#][[;;,2]], ?(#1 > 1 &)] > 2 &] (* _Amiram Eldar, Nov 01 2020 *)
A323054
Number of strict integer partitions of n with no 1's such that no part is a power of any other part.
Original entry on oeis.org
1, 0, 1, 1, 1, 2, 1, 3, 3, 4, 4, 6, 6, 8, 9, 12, 13, 16, 19, 21, 25, 30, 36, 40, 47, 53, 63, 71, 83, 94, 107, 121, 140, 159, 180, 204, 233, 260, 296, 334, 377, 421, 474, 532, 598, 668, 750, 835, 933, 1038, 1163, 1292, 1435, 1597, 1771, 1966, 2180, 2421, 2673
Offset: 0
The a(2) = 1 through a(13) = 8 strict integer partitions (A = 10, B = 11, C = 12, D = 13):
(2) (3) (4) (5) (6) (7) (8) (9) (A) (B) (C) (D)
(32) (43) (53) (54) (64) (65) (75) (76)
(52) (62) (63) (73) (74) (84) (85)
(72) (532) (83) (A2) (94)
(92) (543) (A3)
(632) (732) (B2)
(643)
(652)
Cf.
A001597,
A007916,
A025147,
A052410,
A078374,
A087897,
A120641,
A275972,
A303362,
A323053,
A323087,
A323088.
-
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[IntegerPartitions[n],And[FreeQ[#,1],UnsameQ@@#,stableQ[#,IntegerQ[Log[#1,#2]]&]]&]],{n,30}]
A324750
Number of strict integer partitions of n not containing 1 or any part whose prime indices all belong to the partition.
Original entry on oeis.org
1, 0, 1, 1, 1, 1, 2, 3, 2, 4, 4, 4, 6, 8, 8, 11, 10, 15, 16, 19, 23, 27, 28, 35, 39, 47, 50, 63, 68, 77, 91, 102, 114, 130, 147, 169, 187, 213, 237, 268, 300, 336, 380, 422, 472, 525, 587, 647, 731, 810, 895, 996, 1102, 1227, 1355, 1498, 1661, 1818, 2020, 2221
Offset: 0
The a(2) = 1 through a(17) = 15 strict integer partitions (A...H = 10...17):
2 3 4 5 6 7 8 9 A B C D E F G H
42 43 62 54 64 65 75 76 86 87 97 98
52 63 73 83 84 85 95 96 A6 A7
72 82 542 93 94 A4 A5 C4 B6
A2 A3 B3 B4 D3 C5
642 B2 C2 C3 E2 D4
643 752 D2 763 E3
652 842 654 862 F2
762 943 854
843 A42 863
852 872
A43
A52
B42
6542
Cf.
A000720,
A001462,
A007097,
A074971,
A078374,
A112798,
A276625,
A290822,
A304360,
A305713,
A306844.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!MemberQ[#,1]&&!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]],{n,0,30}]
A337697
Number of pairwise coprime compositions of n with no 1's, where a singleton is not considered coprime.
Original entry on oeis.org
0, 0, 0, 0, 0, 2, 0, 4, 2, 4, 8, 8, 14, 10, 16, 12, 30, 38, 46, 46, 48, 52, 62, 152, 96, 156, 112, 190, 256, 338, 420, 394, 326, 402, 734, 622, 1150, 802, 946, 898, 1730, 1946, 2524, 2200, 2328, 2308, 3356, 5816, 4772, 5350, 4890, 6282, 6316, 12092, 8902
Offset: 0
The a(5) = 2 through a(12) = 14 compositions (empty column indicated by dot):
(2,3) . (2,5) (3,5) (2,7) (3,7) (2,9) (5,7)
(3,2) (3,4) (5,3) (4,5) (7,3) (3,8) (7,5)
(4,3) (5,4) (2,3,5) (4,7) (2,3,7)
(5,2) (7,2) (2,5,3) (5,6) (2,7,3)
(3,2,5) (6,5) (3,2,7)
(3,5,2) (7,4) (3,4,5)
(5,2,3) (8,3) (3,5,4)
(5,3,2) (9,2) (3,7,2)
(4,3,5)
(4,5,3)
(5,3,4)
(5,4,3)
(7,2,3)
(7,3,2)
A022340 intersected with
A333227 is a ranking sequence (using standard compositions
A066099) for these compositions.
A337450 is the relatively prime instead of pairwise coprime version, with strict case
A337451 and unordered version
A302698.
A337485 is the unordered version (or
A007359 with singletons considered coprime), with Heinz numbers
A337984.
A337563 is the case of unordered triples.
-
Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],!MemberQ[#,1]&&CoprimeQ@@#&]],{n,0,30}]
A366845
Number of integer partitions of n that contain at least one even part and whose halved even parts are relatively prime.
Original entry on oeis.org
0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 23, 31, 43, 58, 82, 107, 144, 189, 250, 323, 420, 537, 695, 880, 1114, 1404, 1774, 2210, 2759, 3423, 4239, 5223, 6430, 7869, 9640, 11738, 14266, 17297, 20950, 25256, 30423, 36545, 43824, 52421, 62620, 74599, 88802, 105431
Offset: 0
The partition y = (6,4) has halved even parts (3,2) which are relatively prime, so y is counted under a(10).
The a(2) = 1 through a(9) = 15 partitions:
(2) (21) (22) (32) (42) (52) (62) (72)
(211) (221) (222) (322) (332) (432)
(2111) (321) (421) (422) (522)
(2211) (2221) (521) (621)
(21111) (3211) (2222) (3222)
(22111) (3221) (3321)
(211111) (4211) (4221)
(22211) (5211)
(32111) (22221)
(221111) (32211)
(2111111) (42111)
(222111)
(321111)
(2211111)
(21111111)
These partitions have ranks
A366847.
A078374 counts relatively prime strict partitions.
A239261 counts partitions with (sum of odd parts) = (sum of even parts).
-
Table[Length[Select[IntegerPartitions[n], GCD@@Select[#,EvenQ]/2==1&]],{n,0,30}]
Comments