A282892
The difference between the number of partitions of n into odd parts (A000009) and the number of partitions of n into even parts (A035363).
Original entry on oeis.org
0, 1, 0, 2, 0, 3, 1, 5, 1, 8, 3, 12, 4, 18, 7, 27, 10, 38, 16, 54, 22, 76, 33, 104, 45, 142, 64, 192, 87, 256, 120, 340, 159, 448, 215, 585, 283, 760, 374, 982, 486, 1260, 634, 1610, 814, 2048, 1049, 2590, 1335, 3264, 1700, 4097, 2146, 5120, 2708, 6378, 3390, 7917, 4243, 9792, 5276
Offset: 0
-
with(numtheory):
b:= proc(n, t) option remember; `if`(n=0, 1, add(add(`if`(
(d+t)::odd, d, 0), d=divisors(j))*b(n-j, t), j=1..n)/n)
end:
a:= n-> b(n, 0) -b(n, 1):
seq(a(n), n=0..80); # Alois P. Heinz, Feb 24 2017
-
f[n_] := Length[ IntegerPartitions[n, All, 2Range[n] -1]] - Length[ IntegerPartitions[n, All, 2 Range[n]]]; Array[f, 60]
(* Second program: *)
b[n_, t_] := b[n, t] = If[n == 0, 1, Sum[Sum[If[
OddQ[d+t], d, 0], {d, Divisors[j]}]*b[n-j, t], {j, 1, n}]/n];
a[n_] := b[n, 0] - b[n, 1];
a /@ Range[0, 80] (* Jean-François Alcover, Jun 06 2021, after Alois P. Heinz *)
A300351
Triangle whose n-th row lists in order all Heinz numbers of integer partitions of n into odd parts.
Original entry on oeis.org
1, 2, 4, 5, 8, 10, 16, 11, 20, 32, 22, 25, 40, 64, 17, 44, 50, 80, 128, 34, 55, 88, 100, 160, 256, 23, 68, 110, 125, 176, 200, 320, 512, 46, 85, 121, 136, 220, 250, 352, 400, 640, 1024, 31, 92, 170, 242, 272, 275, 440, 500, 704, 800, 1280, 2048, 62, 115, 184
Offset: 1
Triangle of partitions into odd parts begins:
0
(1)
(11)
(3) (111)
(31) (1111)
(5) (311) (11111)
(51) (33) (3111) (111111)
(7) (511) (331) (31111) (1111111)
(71) (53) (5111) (3311) (311111) (11111111)
Cf.
A000009,
A031368,
A056239,
A066208,
A078408,
A215366,
A246867,
A299759,
A299757,
A300063,
A300272.
-
Table[Sort[Times@@Prime/@#&/@Select[IntegerPartitions[n],And@@OddQ/@#&]],{n,0,12}]
A346634
Number of strict odd-length integer partitions of 2n + 1.
Original entry on oeis.org
1, 1, 1, 2, 4, 6, 9, 14, 19, 27, 38, 52, 71, 96, 128, 170, 224, 293, 380, 491, 630, 805, 1024, 1295, 1632, 2048, 2560, 3189, 3958, 4896, 6038, 7424, 9100, 11125, 13565, 16496, 20013, 24223, 29250, 35244, 42378, 50849, 60896, 72789, 86841, 103424, 122960, 145937
Offset: 0
The a(0) = 1 through a(7) = 14 partitions:
(1) (3) (5) (7) (9) (11) (13) (15)
(4,2,1) (4,3,2) (5,4,2) (6,4,3) (6,5,4)
(5,3,1) (6,3,2) (6,5,2) (7,5,3)
(6,2,1) (6,4,1) (7,4,2) (7,6,2)
(7,3,1) (7,5,1) (8,4,3)
(8,2,1) (8,3,2) (8,5,2)
(8,4,1) (8,6,1)
(9,3,1) (9,4,2)
(10,2,1) (9,5,1)
(10,3,2)
(10,4,1)
(11,3,1)
(12,2,1)
(5,4,3,2,1)
The even version is the even bisection of
A067661.
The case of all odd parts is counted by
A069911 (non-strict:
A078408).
A340385 counts partitions with odd length and maximum, ranked by
A340386.
Other cases of odd length:
-
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
`if`(n=0, t, add(b(n-i*j, i-1, abs(t-j)), j=0..min(n/i, 1))))
end:
a:= n-> b(2*n+1$2, 0):
seq(a(n), n=0..80); # Alois P. Heinz, Aug 05 2021
-
Table[Length[Select[IntegerPartitions[2n+1],UnsameQ@@#&&OddQ[Length[#]]&]],{n,0,15}]
A262146
Expansion of f(-x, -x^5) * f(x, x^7) / f(-x, -x^2)^2 in powers of x where f(, ) is Ramanujan's general theta function.
Original entry on oeis.org
1, 2, 4, 8, 15, 25, 42, 68, 107, 166, 253, 377, 557, 811, 1166, 1661, 2344, 3275, 4543, 6253, 8544, 11600, 15653, 20994, 28011, 37178, 49100, 64550, 84489, 110115, 142951, 184867, 238196, 305844, 391391, 499244, 634865, 804925, 1017610, 1282957, 1613195
Offset: 0
G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 15*x^4 + 25*x^5 + 42*x^6 + 68*x^7 + ...
G.f. = q^13 + 2*q^29 + 4*q^45 + 8*q^61 + 15*q^77 + 25*q^93 + 42*q^109 + ...
-
a[ n_] := SeriesCoefficient[ - x^(-5/8) EllipticTheta[ 2, 0, x^3] / EllipticTheta[ 2, 0, x^(1/2)], {x, 0, 2 n + 1}];
-
{a(n) = my(A); if( n<0, 0, n = 2*n + 1; A = x * O(x^n); polcoeff( - eta(x + A) * eta(x^12 + A)^2 / (eta(x^2 + A)^2 * eta(x^6 + A)), n))};
A318155
Expansion of (1/(1 - x)) * Sum_{k>=0} x^(k*(2*k+1)) / Product_{j=1..2*k} (1 - x^j).
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 7, 10, 13, 17, 22, 28, 35, 44, 55, 68, 84, 103, 126, 153, 185, 223, 268, 320, 381, 452, 535, 631, 742, 870, 1018, 1188, 1383, 1607, 1863, 2155, 2489, 2869, 3301, 3792, 4348, 4978, 5691, 6496, 7404, 8428, 9580, 10875, 12330, 13962, 15791, 17840, 20131, 22691
Offset: 0
A000070 counts partitions with alternating sum 1.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A344610 counts partitions by sum and positive reverse-alternating sum.
Cf.
A027193,
A035294,
A067659,
A087447,
A236559,
A236914,
A239829,
A306145,
A344611,
A344739,
A346634.
-
nmax = 53; CoefficientList[Series[1/(1 - x) Sum[x^(k (2 k + 1))/Product[(1 - x^j), {j, 1, 2 k}], {k, 0, nmax}], {x, 0, nmax}], x]
nmax = 53; CoefficientList[Series[(QPochhammer[-x, x] + QPochhammer[x])/(2 (1 - x)), {x, 0, nmax}], x]
Table[Length[Select[IntegerPartitions[2n+1],UnsameQ@@#&&OddQ[Length[#]]&&Count[#,?OddQ]==1&]],{n,0,15}] (* _Gus Wiseman, Jul 29 2021 *)
A318485
Number of p-trees of weight 2n + 1 in which all outdegrees are odd.
Original entry on oeis.org
1, 1, 2, 5, 13, 37, 107, 336, 1037, 3367, 10924, 36438, 121045, 412789, 1398168, 4831708, 16636297, 58084208, 202101971, 712709423, 2502000811, 8880033929, 31428410158, 112199775788, 399383181020, 1433385148187, 5128572792587, 18481258241133
Offset: 0
The a(4) = 13 p-trees of weight 9 with odd outdegrees:
((((ooo)oo)oo)oo)
(((ooo)(ooo)o)oo)
(((ooo)oo)(ooo)o)
((ooo)(ooo)(ooo))
(((ooooo)oo)oo)
(((ooo)oooo)oo)
((ooooo)(ooo)o)
(((ooo)oo)oooo)
((ooo)(ooo)ooo)
((ooooooo)oo)
((ooooo)oooo)
((ooo)oooooo)
(ooooooooo)
Cf.
A027193,
A063834,
A078408,
A196545,
A279374,
A289501,
A298118,
A300300,
A300301,
A300355,
A300436,
A300647,
A300652,
A300797,
A302243.
-
b[n_]:=b[n]=If[n>1,0,1]+Sum[Times@@b/@y,{y,Select[IntegerPartitions[n],Length[#]>1&&OddQ[Length[#]]&]}];
Table[b[n],{n,1,20,2}]
-
seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, v[n] = polcoef(1/prod(k=1, n-1, 1 - v[k]*x^(2*k-1) + O(x^(2*n))) - 1/prod(k=1, n-1, 1 + v[k]*x^(2*k-1) + O(x^(2*n))), 2*n-1)/2); v} \\ Andrew Howroyd, Aug 27 2018
A341448
Heinz numbers of integer partitions of type OO.
Original entry on oeis.org
6, 14, 15, 24, 26, 33, 35, 38, 51, 54, 56, 58, 60, 65, 69, 74, 77, 86, 93, 95, 96, 104, 106, 119, 122, 123, 126, 132, 135, 140, 141, 142, 143, 145, 150, 152, 158, 161, 177, 178, 185, 201, 202, 204, 209, 214, 215, 216, 217, 219, 221, 224, 226, 232, 234, 240
Offset: 1
The sequence of partitions together with their Heinz numbers begins:
6: (2,1) 74: (12,1) 141: (15,2)
14: (4,1) 77: (5,4) 142: (20,1)
15: (3,2) 86: (14,1) 143: (6,5)
24: (2,1,1,1) 93: (11,2) 145: (10,3)
26: (6,1) 95: (8,3) 150: (3,3,2,1)
33: (5,2) 96: (2,1,1,1,1,1) 152: (8,1,1,1)
35: (4,3) 104: (6,1,1,1) 158: (22,1)
38: (8,1) 106: (16,1) 161: (9,4)
51: (7,2) 119: (7,4) 177: (17,2)
54: (2,2,2,1) 122: (18,1) 178: (24,1)
56: (4,1,1,1) 123: (13,2) 185: (12,3)
58: (10,1) 126: (4,2,2,1) 201: (19,2)
60: (3,2,1,1) 132: (5,2,1,1) 202: (26,1)
65: (6,3) 135: (3,2,2,2) 204: (7,2,1,1)
69: (9,2) 140: (4,3,1,1) 209: (8,5)
Note: A-numbers of ranking sequences are in parentheses below.
The case of odd parts, length, and sum is counted by
A078408 (
A300272).
These partitions (for odd n) are counted by
A236914.
A340101 counts factorizations into odd factors.
Cf.
A000700,
A024429,
A027187,
A106529,
A117409,
A174725,
A257541,
A325134,
A339890,
A340102,
A340604.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],OddQ[Count[primeMS[#],?EvenQ]]&&OddQ[Count[primeMS[#],?OddQ]]&]
A341449
Heinz numbers of integer partitions into odd parts > 1.
Original entry on oeis.org
1, 5, 11, 17, 23, 25, 31, 41, 47, 55, 59, 67, 73, 83, 85, 97, 103, 109, 115, 121, 125, 127, 137, 149, 155, 157, 167, 179, 187, 191, 197, 205, 211, 227, 233, 235, 241, 253, 257, 269, 275, 277, 283, 289, 295, 307, 313, 331, 335, 341, 347, 353, 365, 367, 379, 389
Offset: 1
The sequence of partitions together with their Heinz numbers begins:
1: () 97: (25) 197: (45) 307: (63)
5: (3) 103: (27) 205: (13,3) 313: (65)
11: (5) 109: (29) 211: (47) 331: (67)
17: (7) 115: (9,3) 227: (49) 335: (19,3)
23: (9) 121: (5,5) 233: (51) 341: (11,5)
25: (3,3) 125: (3,3,3) 235: (15,3) 347: (69)
31: (11) 127: (31) 241: (53) 353: (71)
41: (13) 137: (33) 253: (9,5) 365: (21,3)
47: (15) 149: (35) 257: (55) 367: (73)
55: (5,3) 155: (11,3) 269: (57) 379: (75)
59: (17) 157: (37) 275: (5,3,3) 389: (77)
67: (19) 167: (39) 277: (59) 391: (9,7)
73: (21) 179: (41) 283: (61) 401: (79)
83: (23) 187: (7,5) 289: (7,7) 415: (23,3)
85: (7,3) 191: (43) 295: (17,3) 419: (81)
Note: A-numbers of ranking sequences are in parentheses below.
These partitions are counted by
A087897.
The version for factorizations is
A340101.
A112798 lists the prime indices of each positive integer.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],OddQ[#]&&OddQ[Times@@primeMS[#]]&]
A365829
Squarefree non-semiprimes.
Original entry on oeis.org
1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 30, 31, 37, 41, 42, 43, 47, 53, 59, 61, 66, 67, 70, 71, 73, 78, 79, 83, 89, 97, 101, 102, 103, 105, 107, 109, 110, 113, 114, 127, 130, 131, 137, 138, 139, 149, 151, 154, 157, 163, 165, 167, 170, 173, 174, 179, 181, 182, 186
Offset: 1
The terms together with their prime indices begin:
1: {} 43: {14} 102: {1,2,7}
2: {1} 47: {15} 103: {27}
3: {2} 53: {16} 105: {2,3,4}
5: {3} 59: {17} 107: {28}
7: {4} 61: {18} 109: {29}
11: {5} 66: {1,2,5} 110: {1,3,5}
13: {6} 67: {19} 113: {30}
17: {7} 70: {1,3,4} 114: {1,2,8}
19: {8} 71: {20} 127: {31}
23: {9} 73: {21} 130: {1,3,6}
29: {10} 78: {1,2,6} 131: {32}
30: {1,2,3} 79: {22} 137: {33}
31: {11} 83: {23} 138: {1,2,9}
37: {12} 89: {24} 139: {34}
41: {13} 97: {25} 149: {35}
42: {1,2,4} 101: {26} 151: {36}
First condition alone is
A005117 (squarefree).
Second condition alone is
A100959 (non-semiprime).
The nonprime case is 1 followed by
A350352.
-
Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]!=2&]
-
isok(k) = my(f=factor(k)); issquarefree(f) && (bigomega(f) != 2); \\ Michel Marcus, Oct 07 2023
Comments