cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 42 results. Next

A335324 Square part of 4th-power-free part of n.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 4, 1, 1, 1, 1, 1, 9, 1, 4, 1, 1, 1, 4, 25, 1, 9, 4, 1, 1, 1, 1, 1, 1, 1, 36, 1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 1, 49, 25, 1, 4, 1, 9, 1, 4, 1, 1, 1, 4, 1, 1, 9, 4, 1, 1, 1, 4, 1, 1, 1, 36, 1, 1, 25, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1
Offset: 1

Views

Author

Peter Munn, May 31 2020

Keywords

Comments

Equivalently, biquadratefree (4th-power-free) part of square part of n.
Multiplicative. The terms are squares of squarefree numbers (A062503).
Every positive integer n is the product of a unique subset S_n of the terms of A050376 (sometimes called Fermi-Dirac primes). a(n) is the product of the members of S_n that are squares of prime numbers (A001248).

Examples

			Removing the 4th powers from 192 = 2^6 * 3^1 gives 2^(6 - 4) * 3^1 = 2^2 * 3 = 12. So the 4th-power-free part of 192 is 12. The square part of 12 (largest square dividing 12) is 4. So a(192) = 4.
		

Crossrefs

A007913, A008833, A008835, A053165 are used in formulas defining the sequence.
Column 1 of A352780.
Range of values is A062503.
Positions of 1's: A252895.
Related to A038500 by A225546.
The formula section details how the sequence maps the terms of A003961, A331590.

Programs

  • Mathematica
    f[p_, e_] := p^(2*Floor[e/2] - 4*Floor[e/4]); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Jun 01 2020 *)
  • PARI
    A053165(n)=my(f=factor(n)); f[, 2]=f[, 2]%4; factorback(f);
    a(n) = my(m=A053165(n)); m/core(m); \\ Michel Marcus, Jun 01 2020
    
  • Python
    from math import prod
    from sympy import factorint
    def A335324(n): return prod(p**(e&2) for p, e in factorint(n).items()) # Chai Wah Wu, Aug 07 2024

Formula

a(n) = A053165(A008833(n)) = A008833(A053165(n)).
a(n) = A053165(n) / A007913(n).
a(n) = A008833(n) / A008835(n).
n = A007913(n) * a(n) * A008835(n).
a(n) = A225546(A038500(A225546(n))).
a(n^2) = A007913(n)^2.
a(A003961(n)) = A003961(a(n)).
a(A331590(n, k)) = A331590(a(n), a(k)).
a(p^e) = p^(2*floor(e/2) - 4*floor(e/4)). - Amiram Eldar, Jun 01 2020
From Amiram Eldar, Sep 21 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * zeta(4*s)/(zeta(2*s) * zeta(4*s-4)).
Sum_{k=1..n} a(k) ~ (4*zeta(3/2)*zeta(4))/(21*zeta(3)) * n^(3/2). (End)

A370903 Partial alternating sums of the powerful part function (A057521).

Original entry on oeis.org

1, 0, 1, -3, -2, -3, -2, -10, -1, -2, -1, -5, -4, -5, -4, -20, -19, -28, -27, -31, -30, -31, -30, -38, -13, -14, 13, 9, 10, 9, 10, -22, -21, -22, -21, -57, -56, -57, -56, -64, -63, -64, -63, -67, -58, -59, -58, -74, -25, -50, -49, -53, -52, -79, -78, -86, -85
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, 1, p^e]; pfp[n_] := Times @@ f @@@ FactorInteger[n]; pfp[1] = 1; Accumulate[Array[(-1)^(# + 1) * pfp[#] &, 100]]
  • PARI
    pfp(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1, 1, f[i, 1]^f[i, 2]));}
    lista(kmax) = {my(s = 0); for(k = 1, kmax, s += (-1)^(k+1) * pfp(k); print1(s, ", "))};

Formula

a(n) = c_1 * n^(3/2) + c_2 * n^(4/3) + O(n^(6/5)), where c_1 = (zeta(3/2)/(3*zeta(3))) * ((9-12*sqrt(2))/23) * Product_{p prime} (1 + (sqrt(p)-1)/(p*(p-sqrt(p)+1))) = -0.40656281796860400941..., and c_2 = (zeta(4/3)/(4*zeta(2))) * ((2^(5/3)-3*2^(1/3)-1)/(2^(5/3)-2^(1/3)+1)) * Product_{p prime} (1 + (p^(1/3)-1)/(p*(p^(2/3)-p^(1/3)+1))) = -0.52513876339565998938... (Tóth, 2017).

A300853 L.g.f.: log(Product_{k>=1} (1 + x^(k^2))) = Sum_{n>=1} a(n)*x^n/n.

Original entry on oeis.org

1, -1, 1, 3, 1, -1, 1, -5, 10, -1, 1, 3, 1, -1, 1, 11, 1, -10, 1, 3, 1, -1, 1, -5, 26, -1, 10, 3, 1, -1, 1, -21, 1, -1, 1, 30, 1, -1, 1, -5, 1, -1, 1, 3, 10, -1, 1, 11, 50, -26, 1, 3, 1, -10, 1, -5, 1, -1, 1, 3, 1, -1, 10, 43, 1, -1, 1, 3, 1, -1, 1, -50, 1, -1, 26, 3, 1, -1, 1, 11, 91, -1, 1, 3, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 13 2018

Keywords

Examples

			L.g.f.: L(x) = x - x^2/2 + x^3/3 + 3*x^4/4 + x^5/5 - x^6/6 + x^7/7 - 5*x^8/8 + 10*x^9/9 - x^10/10 + ...
exp(L(x)) = 1 + x + x^4 + x^5 + x^9 + x^10 + x^13 + x^14 + ... + A033461(n)*x^n + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 85; Rest[CoefficientList[Series[Log[Product[(1 + x^k^2), {k, 1, Floor[nmax^(1/2) + 1]}]], {x, 0, nmax}],x] Range[0, nmax]]
    nmax = 85; Rest[CoefficientList[Series[Sum[k^2 x^k^2/(1 + x^k^2), {k, 1,Floor[nmax^(1/2) + 1]}], {x, 0, nmax}], x]]
    Table[DivisorSum[n, (-1)^(n/# + 1) # &, IntegerQ[#^(1/2)] &], {n, 85}]
    f[p_, e_] := If[p == 2, (1 - (-2)^(e + 1))/3, (p^(2*Floor[e/2 + 1]) - 1)/(p^2 - 1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 25 2020 *)
  • PARI
    seq(n)={Vec(deriv(log(prod(k=1, n, (1 + x^(k^2) + O(x*x^n))))))} \\ Andrew Howroyd, Jul 20 2018
    
  • PARI
    a(n)={sumdiv(n, d, if(n%d^2, 0, (-1)^(n/d^2 + 1) * d^2))} \\ Andrew Howroyd, Jul 20 2018

Formula

G.f.: Sum_{k>=1} k^2*x^(k^2)/(1 + x^(k^2)).
a(n) = 1 if n is an odd squarefree (A056911).
a(n) = -1 if n is an even squarefree (A039956).
a(n) = Sum_{d^2|n} (-1)^(n/d^2 + 1) * d^2. - Andrew Howroyd, Jul 20 2018
Multiplicative with a(2^e) = (1 - (-2)^(e + 1))/3, and a(p^e) = (p^(2*floor(e/2 + 1)) - 1)/(p^2 - 1) for an odd prime p. - Amiram Eldar, Oct 25 2020
From Amiram Eldar, Dec 18 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * (1 - 1/2^(s-1)).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = (1 - 1/sqrt(2)) * zeta(3/2)/3 = A268682 * A078434 / 3 = 0.255049... . (End)

Extensions

Keyword:mult added by Andrew Howroyd, Jul 20 2018

A370329 a(n) is the number of coreful divisors of the n-th powerful number that are also powerful numbers.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 4, 1, 1, 5, 2, 3, 1, 2, 1, 2, 6, 3, 1, 1, 2, 4, 1, 4, 7, 4, 1, 3, 2, 1, 2, 3, 6, 1, 1, 2, 8, 1, 5, 3, 6, 2, 1, 5, 3, 4, 1, 8, 1, 1, 2, 4, 4, 9, 1, 2, 6, 1, 1, 9, 2, 2, 2, 1, 2, 1, 1, 4, 5, 1, 10, 1, 2, 1, 3, 8, 6, 3, 10, 1, 6, 2, 1, 7, 2, 3
Offset: 1

Views

Author

Amiram Eldar, Feb 15 2024

Keywords

Comments

A coreful divisor d of a number n is a divisor with the same set of distinct prime factors as n (see A307958).
The positive terms of A361430.

Crossrefs

Cf. A001694, A002117, A062503, A078434, A307958, A360908 (analogous with squares), A361430, A370328.

Programs

  • Mathematica
    f[p_, e_] := e - 1; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; With[{max = 10^4}, s /@ Union@ Flatten@ Table[i^2*j^3, {j, 1, max^(1/3)}, {i, 1, Sqrt[max/j^3]}]]
  • PARI
    lista(kmax) = {my(e); for(k = 1, kmax, e = factor(k)[,2]; if(k == 1 || vecmin(e) > 1, print1(prod(i = 1, #e, e[i]-1), ", ")));}

Formula

a(n) = A361430(A001694(n)).
a(n) = 1 if and only if n is the square of a squarefree number (A062503).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(3/2) * zeta(3) * Product_{p prime} (1 + 2/p^2 + 2/p^(5/2) - 1/p^3 - 2/p^(7/2) - 2/p^4) = 6.91748056612108993003... . (The infinite product of primes is the value of f(1/2) in A361430).

A058266 An approximation to sigma_{1/2}(n): floor( sum_{ d divides n } sqrt(d) ).

Original entry on oeis.org

1, 2, 2, 4, 3, 6, 3, 7, 5, 7, 4, 12, 4, 8, 8, 11, 5, 13, 5, 14, 9, 10, 5, 19, 8, 11, 10, 16, 6, 21, 6, 16, 11, 12, 11, 25, 7, 12, 12, 23, 7, 24, 7, 19, 18, 13, 7, 30, 10, 19, 13, 20, 8, 26, 13, 26, 14, 15, 8, 39, 8, 15, 20, 24, 14, 28, 9, 22, 15, 28, 9, 41, 9
Offset: 1

Views

Author

N. J. A. Sloane, Dec 08 2000

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory); f := proc(n) local d, t1, t2; t2 := 0; t1 := divisors(n); for d in t1 do t2 := t2 + sqrt(d) end do; t2 end proc; # exact value of sigma_{1/2}(n)
    with(numtheory):seq(floor(sigma[1/2](n)),n=1..80);
  • Mathematica
    f[n_] := Floor@DivisorSigma[1/2, n]; Array[f, 73] (* Robert G. Wilson v, Aug 17 2017*)
  • PARI
    a(n) = floor(sumdiv(n, d, sqrt(d))); \\ Michel Marcus, Aug 17 2017

Formula

Sum_{k=1..n} a(k) ~ (2/3)*zeta(3/2) * n^(3/2). - Amiram Eldar, Jan 14 2023

A058267 An approximation to sigma_{1/2}(n): round( Sum_{ d divides n } sqrt(d) ).

Original entry on oeis.org

1, 2, 3, 4, 3, 7, 4, 7, 6, 8, 4, 12, 5, 9, 9, 11, 5, 14, 5, 14, 10, 10, 6, 20, 8, 11, 11, 16, 6, 21, 7, 17, 12, 12, 12, 25, 7, 13, 13, 23, 7, 24, 8, 19, 19, 14, 8, 31, 11, 20, 14, 20, 8, 26, 14, 26, 15, 15, 9, 39, 9, 16, 21, 25, 15, 28, 9, 23, 16, 28, 9, 42, 10
Offset: 1

Views

Author

N. J. A. Sloane, Dec 08 2000

Keywords

Crossrefs

Programs

  • Maple
    map(round @ numtheory:-sigma[1/2], [$1..100]); # Robert Israel, Aug 18 2017
  • Mathematica
    f[n_] := Round@ DivisorSigma[1/2, n]; Array[f, 70] (* Robert G. Wilson v, Aug 17 2017 *)
  • PARI
    a(n) = round(sumdiv(n, d, sqrt(d))); \\ Michel Marcus, Aug 17 2017

Formula

Sum_{k=1..n} a(k) ~ (2/3)*zeta(3/2) * n^(3/2). - Amiram Eldar, Jan 14 2023

A058268 An approximation to sigma_{1/2}(n): ceiling( sum_{d|n} sqrt(d) ).

Original entry on oeis.org

1, 3, 3, 5, 4, 7, 4, 8, 6, 8, 5, 13, 5, 9, 9, 12, 6, 14, 6, 15, 10, 11, 6, 20, 9, 12, 11, 17, 7, 22, 7, 17, 12, 13, 12, 26, 8, 13, 13, 24, 8, 25, 8, 20, 19, 14, 8, 31, 11, 20, 14, 21, 9, 27, 14, 27, 15, 16, 9, 40, 9, 16, 21, 25, 15, 29, 10, 23, 16, 29, 10, 42
Offset: 1

Views

Author

N. J. A. Sloane, Dec 08 2000

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory); f := proc(n) local d, t1, t2; t2 := 0; t1 := divisors(n); for d in t1 do t2 := t2 + sqrt(d) end do; t2 end proc; # exact value of sigma_{1/2}(n)
  • Mathematica
    a[n_] := Ceiling[DivisorSigma[1/2, n]]; Array[a, 70] (* Amiram Eldar, Jan 14 2023 *)

Formula

Sum_{k=1..n} a(k) ~ (2/3)*zeta(3/2) * n^(3/2). - Amiram Eldar, Jan 14 2023

A293235 a(n) is the sum of proper divisors of n that are square.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 10, 1, 5, 1, 1, 1, 5, 1, 1, 10, 5, 1, 1, 1, 21, 1, 1, 1, 14, 1, 1, 1, 5, 1, 1, 1, 5, 10, 1, 1, 21, 1, 26, 1, 5, 1, 10, 1, 5, 1, 1, 1, 5, 1, 1, 10, 21, 1, 1, 1, 5, 1, 1, 1, 50, 1, 1, 26, 5, 1, 1, 1, 21, 10, 1, 1, 5, 1, 1, 1, 5, 1, 10, 1, 5, 1, 1, 1, 21, 1, 50, 10, 30, 1, 1, 1, 5, 1
Offset: 1

Views

Author

Antti Karttunen, Oct 08 2017

Keywords

Comments

a(n) = 1 if and only if n > 1 is squarefree or the square of a prime. - Robert Israel, Oct 08 2017

Crossrefs

Programs

  • Maple
    A035316:= n -> mul((p[1]^(p[2]+2-(p[2] mod 2))-1)/(p[1]^2-1), p = ifactors(n)[2]):
    f:= n -> A035316(n) - `if`(issqr(n),n,0):
    map(f, [$1..100]); # Robert Israel, Oct 08 2017
  • Mathematica
    Table[Total[Select[Most[Divisors[n]],IntegerQ[Sqrt[#]]&]],{n,120}] (* Harvey P. Dale, Dec 29 2023 *)
  • PARI
    A293235(n) = sumdiv(n,d,(d
    				

Formula

a(n) = Sum_{d|n, dA010052(d)*d.
a(n) = A035316(n) - (A010052(n)*n).
G.f.: Sum_{k>=1} k^2 * x^(2*k^2) / (1 - x^(k^2)). - Ilya Gutkovskiy, Apr 13 2021
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = (zeta(3/2)-1)/3 = 0.537458449561... . - Amiram Eldar, Dec 01 2023

A370786 Powerful numbers with an odd number of prime factors (counted with multiplicity).

Original entry on oeis.org

8, 27, 32, 72, 108, 125, 128, 200, 243, 288, 343, 392, 432, 500, 512, 648, 675, 800, 968, 972, 1125, 1152, 1323, 1331, 1352, 1372, 1568, 1728, 1800, 2000, 2048, 2187, 2197, 2312, 2592, 2700, 2888, 3087, 3125, 3200, 3267, 3528, 3872, 3888, 4232, 4500, 4563, 4608
Offset: 1

Views

Author

Amiram Eldar, Mar 02 2024

Keywords

Comments

Jakimczuk (2024) proved:
The number of terms that do not exceed x is N(x) = c * sqrt(x) + o(sqrt(x)) where c = (zeta(3/2)/zeta(3) - 1/zeta(3/2))/2 = 0.895230... .
The relative asymptotic density of this sequence within the powerful numbers is (1 - zeta(3)/(zeta(3/2)^2))/2 = 0.411930... .
In general, the relative asymptotic density of the s-full numbers (numbers whose exponents in their prime factorization are all >= s) with an odd number of prime factors (counted with multiplicity) within the s-full numbers is smaller than 1/2 when s is odd.

Crossrefs

Intersection of A001694 and A026424.
Complement of A370785 within A001694.
A370788 is a subsequence.

Programs

  • Mathematica
    q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, AllTrue[e, # > 1 &] && OddQ[Total[e]]]; Select[Range[2500], q]
  • PARI
    is(n) = {my(e = factor(n)[, 2]); n > 1 && vecmin(e) > 1 && vecsum(e)%2;}

A211113 Decimal expansion of -zeta(-1/2).

Original entry on oeis.org

2, 0, 7, 8, 8, 6, 2, 2, 4, 9, 7, 7, 3, 5, 4, 5, 6, 6, 0, 1, 7, 3, 0, 6, 7, 2, 5, 3, 9, 7, 0, 4, 9, 3, 0, 2, 2, 2, 6, 2, 6, 8, 5, 3, 1, 2, 8, 7, 6, 7, 2, 5, 3, 7, 6, 1, 0, 1, 1, 3, 5, 5, 7, 1, 0, 6, 1, 4, 7, 2, 9, 1, 9, 3, 2, 2, 9, 2, 3, 4, 0, 4, 8, 7, 5, 4, 3, 2, 6, 6, 9, 4, 0, 7, 3, 3, 2, 1, 5, 6, 4, 3, 1, 0, 9, 9, 7, 5, 6
Offset: 0

Views

Author

Stanislav Sykora, May 17 2012

Keywords

Examples

			0.207886224977354566017306725397049302226...
		

Crossrefs

Programs

Formula

Equals -zeta(-1/2) = zeta(3/2)/(4*Pi) = A078434/ (10*A019694).
Previous Showing 11-20 of 42 results. Next