cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A303759 Number of times the largest prime power factor of n (A034699) is largest prime power factor for numbers <= n; a(1) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 4, 3, 2, 1, 2, 1, 2, 1, 4, 1, 5, 1, 1, 3, 2, 5, 3, 1, 2, 3, 3, 1, 6, 1, 4, 4, 2, 1, 2, 1, 2, 3, 4, 1, 2, 5, 4, 3, 2, 1, 6, 1, 2, 5, 1, 5, 6, 1, 4, 3, 7, 1, 6, 1, 2, 3, 4, 7, 6, 1, 3, 1, 2, 1, 8, 5, 2, 3, 8, 1, 7, 7, 4, 3, 2, 5, 2, 1, 2, 9, 4, 1, 6, 1, 8, 9
Offset: 1

Views

Author

Antti Karttunen, Apr 30 2018

Keywords

Comments

Ordinal transform of A034699.

Crossrefs

Cf. A000961 (positions of ones), A034699.
Cf. also A078899, A284600, A302789.

Programs

  • Maple
    b:= proc() 0 end:
    a:= proc(n) option remember; local t;
          t:= max(1, seq(i[1]^i[2], i=ifactors(n)[2]));
          b(t):= b(t)+1
        end:
    seq(a(n), n=1..120);  # Alois P. Heinz, Apr 30 2018
  • Mathematica
    f[n_] := Max[Power @@@ FactorInteger[n]];
    b[_] = 0;
    a[n_] := With[{t = f[n]}, b[t] = b[t]+1];
    Array[a, 105] (* Jean-François Alcover, Jan 03 2022 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A034699(n) = if(1==n,n,fordiv(n, d, if(isprimepower(n/d), return(n/d))));
    v303759 = ordinal_transform(vector(up_to,n,A034699(n)));
    A303759(n) = v303759[n];

A304734 Ordinal transform of the largest prime factor of the n-th term of EKG-sequence.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 4, 3, 1, 2, 3, 5, 1, 2, 3, 6, 4, 4, 1, 2, 3, 7, 5, 6, 4, 5, 1, 2, 3, 8, 5, 1, 2, 3, 6, 1, 2, 3, 7, 8, 4, 1, 2, 3, 9, 9, 4, 10, 7, 8, 9, 10, 5, 5, 10, 1, 2, 3, 6, 1, 2, 3, 11, 6, 4, 1, 2, 3, 11, 6, 4, 12, 1, 2, 3, 12, 11, 7, 8, 1, 2, 3, 13, 5, 5, 14, 4, 1, 2, 3, 13, 12, 7, 8, 6, 9, 13, 14, 1, 2, 3, 6, 10, 14, 4
Offset: 1

Views

Author

Antti Karttunen, May 18 2018

Keywords

Comments

Ordinal transform of A304733(n) = A006530(A064413(n)).

Crossrefs

Programs

  • Mathematica
    terms = 105;
    ekGrapher[s_List] := Block[{m = s[[-1]], k = 3}, While[MemberQ[s, k] || GCD[m, k] == 1, k++]; Append[s, k]];
    A304733 = FactorInteger[#][[-1, 1]]& /@ Nest[ekGrapher, {1, 2}, terms];
    b[_] = 0;
    a[n_] := a[n] = With[{t = A304733[[n]]}, b[t] = b[t]+1];
    Array[a, terms] (* Jean-François Alcover, Dec 20 2021, after Robert G. Wilson v in A064413 *)
  • PARI
    A006530(n) = if(n>1, vecmax(factor(n)[, 1]), 1);
    A304733(n) = A006530(A064413(n)); \\ Needs also code for A064413.
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    v304734 = ordinal_transform(vector(65539,n,A304733(n)));
    A304734(n) = v304734[n];

A331296 Number of values of k, 1 <= k <= n, with A263297(k) = A263297(n), where A263297(n) = max(A001222(n), A061395(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 2, 4, 3, 1, 4, 1, 2, 5, 3, 1, 6, 1, 7, 4, 2, 1, 5, 8, 2, 9, 6, 1, 10, 1, 3, 4, 2, 7, 8, 1, 2, 3, 9, 1, 10, 1, 5, 11, 2, 1, 6, 11, 12, 3, 4, 1, 12, 7, 13, 3, 2, 1, 14, 1, 2, 15, 5, 6, 8, 1, 4, 3, 16, 1, 9, 1, 2, 13, 4, 10, 7, 1, 11, 17, 2, 1, 18, 5, 2, 3, 12, 1, 19, 8, 4, 3, 2, 5, 9, 1, 20, 13, 21, 1, 6, 1, 10, 22
Offset: 1

Views

Author

Antti Karttunen, Jan 18 2020

Keywords

Comments

Ordinal transform of A263297.

Crossrefs

Cf. also A078899.

Programs

  • Mathematica
    A263297[n_] := If[n == 1, 0, With[{f = FactorInteger[n]}, Max[PrimePi[Max[f[[All, 1]]]], Total[f[[All, 2]]]]]];
    b[_] = 0;
    a[n_] := With[{t = A263297[n]}, b[t] = b[t] + 1];
    Array[a, 105] (* Jean-François Alcover, Jan 10 2022 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A263297(n) = if(n<2, 0,  my(f=factor(n)); max(vecsum(f[, 2]), primepi(f[#f~, 1]))); \\ From A263297
    v331296 = ordinal_transform(vector(up_to, n, A263297(n)));
    A331296(n) = v331296[n];

A385653 Least k such that A385652(k) = n.

Original entry on oeis.org

2, 4, 8, 12, 18, 24, 27, 36, 48, 54, 72, 80, 90, 100, 120, 125, 135, 150, 160, 180, 196, 210, 224, 245, 252, 280, 294, 315, 336, 343, 350, 378, 392, 420, 441, 448, 490, 504, 525, 560, 567, 588, 630, 672, 686, 700, 735, 756, 784, 840, 875, 882, 896, 945, 980
Offset: 1

Views

Author

Pontus von Brömssen, Jul 06 2025

Keywords

Comments

A385654(n) is uniquely popular on the interval [2,a(n)]; see A289662.
Equivalently, a(n) is the least k >= 2 such that A078899(k) = n.

Crossrefs

Programs

  • PARI
    gpf(n) = if (n==1,1, vecmax(factor(n)[,1])); \\ A006530
    f(n) = my(v=vector(n, k, gpf(k)), s=Set(v)); vecmax(apply(x->#x, vector(#s, i, select(x->(x==s[i]), v)))); \\ A385652
    a(n) = my(k=2); while (f(k) !=n, k++); k; \\ Michel Marcus, Jul 06 2025

A298268 a(1) = 1, and for any n > 1, if n is the k-th number with greatest prime factor p, then a(n) is the k-th number with least prime factor p.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 7, 6, 15, 25, 11, 21, 13, 49, 35, 8, 17, 27, 19, 55, 77, 121, 23, 33, 65, 169, 39, 91, 29, 85, 31, 10, 143, 289, 119, 45, 37, 361, 221, 95, 41, 133, 43, 187, 115, 529, 47, 51, 161, 125, 323, 247, 53, 57, 209, 203, 437, 841, 59, 145, 61, 961
Offset: 1

Views

Author

Rémy Sigrist, Jan 27 2018

Keywords

Comments

This sequence is a permutation of the natural numbers, with inverse A298882.
For any prime p and k > 0:
- if s_p(k) is the k-th p-smooth number and r_p(k) is the k-th p-rough number,
- then a(p * s_p(k)) = p * r_p(k),
- for example: a(11 * A051038(k)) = 11 * A008364(k).

Examples

			The first terms, alongside A006530(n), are:
  n     a(n)   gpf(n)
  --    ----   ------
   1      1      1
   2      2      2
   3      3      3
   4      4      2
   5      5      5
   6      9      3
   7      7      7
   8      6      2
   9     15      3
  10     25      5
  11     11     11
  12     21      3
  13     13     13
  14     49      7
  15     35      5
  16      8      2
  17     17     17
  18     27      3
  19     19     19
  20     55      5
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

a(1) = 1.
a(A125624(n, k)) = A083140(n, k) for any n > 0 and k > 0.
a(n) = A083140(A061395(n), A078899(n)) for any n > 1.
Empirically:
- a(n) = n iff n belongs to A046022,
- a(2^k) = 2 * k for any k > 0,
- a(2 * p) = p^2 for any prime p,
- a(3 * p) = p * A151800(p) for any odd prime p.

A328638 a(n) is the sum of m such that 2 <= m <= n and gpf(m) = gpf(n), where gpf(i) is the greatest prime factor of i (A006530), with a(1) = 1.

Original entry on oeis.org

1, 2, 3, 6, 5, 9, 7, 14, 18, 15, 11, 30, 13, 21, 30, 30, 17, 48, 19, 50, 42, 33, 23, 72, 75, 39, 99, 70, 29, 105, 31, 62, 66, 51, 105, 135, 37, 57, 78, 145, 41, 147, 43, 110, 190, 69, 47, 183, 196, 240, 102, 130, 53, 237, 165, 252, 114, 87, 59, 300
Offset: 1

Views

Author

J. Stauduhar, Oct 22 2019

Keywords

Comments

For n >= 2, a(n) is the sum of the terms that precede n on the row, of the A125624 array, that contains n.

Examples

			5, 10, 15 and 20 have same gpf as 20, so a(20) = 5 + 10 + 15 + 20 = 50.
		

Crossrefs

Programs

  • PARI
    gpf(n)={my(f=factor(n)[,1]); f[#f]}
    a(n)={if(n<=1, n==1, my(t=gpf(n)); sum(i=2, n, if(gpf(i)==t, i, 0)))} \\ Andrew Howroyd, Oct 28 2019

A331295 Number of values of k, 1 <= k <= n, with f(k) = f(n), where f(n) = [A001222(n), A061395(n)].

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 3, 1, 1, 2, 1, 1, 2, 1, 3, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 1, 4, 4, 2, 1, 1, 3, 3, 1, 2, 1, 1, 2, 1, 1, 3, 1, 3, 2, 1, 1, 2, 4, 1, 2, 1, 1, 5, 1, 4, 2, 1, 1, 4, 1, 1, 2, 3, 1, 2, 1, 1, 3, 4, 1, 2, 1, 3, 1, 1, 5, 3, 4, 1, 2, 1, 1, 6
Offset: 1

Views

Author

Antti Karttunen, Jan 19 2020

Keywords

Comments

Ordinal transform of A331298, or equally, of the ordered pair [A001222(n), A061395(n)].

Crossrefs

Programs

  • Mathematica
    f[n_] := f[n] = {PrimeOmega[n], PrimePi[FactorInteger[n]][[-1, 1]]};
    a[n_] := Count[Array[f, n], f[n]];
    Array[a, 105] (* Jean-François Alcover, Jan 10 2022 *)
  • PARI
    up_to = 1001;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1])));
    Aux331298(n) = [bigomega(n), A061395(n)];
    v331295 = ordinal_transform(vector(up_to, n, Aux331298(n)));
    A331295(n) = v331295[n];

A377730 Number of integers less than n that have the same greatest prime factor as n.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 2, 2, 1, 0, 3, 0, 1, 2, 3, 0, 4, 0, 3, 2, 1, 0, 5, 4, 1, 6, 3, 0, 5, 0, 4, 2, 1, 4, 7, 0, 1, 2, 6, 0, 5, 0, 3, 7, 1, 0, 8, 6, 8, 2, 3, 0, 9, 4, 7, 2, 1, 0, 9, 0, 1, 8, 5, 4, 5, 0, 3, 2, 9, 0, 10, 0, 1, 10, 3, 6, 5, 0, 11, 11, 1, 0, 10, 4, 1, 2, 7, 0, 12
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 05 2024

Keywords

Crossrefs

Programs

  • Maple
    R:= NULL:
    for n from 1 to 100 do  p:= max(numtheory:-factorset(n));  if assigned(C[p]) then C[p]:= C[p]+1 else C[p]:= 0 fi;
      R:= R, C[p]
    od:R; # Robert Israel, Nov 07 2024
  • Mathematica
    Table[Length[Select[Range[n - 1], FactorInteger[#][[-1, 1]] == FactorInteger[n][[-1, 1]] &]], {n, 90}]

Formula

a(n) = |{j < n : gpf(j) = gpf(n)}|.
a(n) = A078899(n) - 1.
Previous Showing 11-18 of 18 results.