A129328
Third column of PE^3.
Original entry on oeis.org
0, 0, 1, 9, 72, 570, 4635, 39186, 345828, 3188268, 30684150, 307870365, 3215425554, 34899450768, 393015753039, 4585024011015, 55332235452960, 689799432341928, 8871905851132041, 117581467377389310, 1603990651356920730
Offset: 0
-
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A078938 := proc(n,c) add( A078937(n,k)*A056857(k+1,c),k=0..n) ; end: A129328 := proc(n) A078938(n+1,2) ; end: seq(A129328(n),n=0..27) ; # R. J. Mathar, May 30 2008
-
A056857[n_, c_] := If[n <= c, 0, BellB[n - 1 - c] Binomial[n - 1, c]];
A078937[n_, c_] := Sum[A056857[n, k] A056857[k + 1, c], {k, 0, n}];
A078938[n_, c_] := Sum[A078937[n, k] A056857[k + 1, c], {k, 0, n}];
a[n_] := A078938[n + 1, 2];
a /@ Range[0, 20] (* Jean-François Alcover, Mar 24 2020, after R. J. Mathar *)
A129329
Fourth column of PE^3.
Original entry on oeis.org
0, 0, 0, 1, 12, 120, 1140, 10815, 104496, 1037484, 10627560, 112508550, 1231481460, 13933510734, 162864103584, 1965078765195, 24453461392080, 313549334233440, 4138796594051568, 56188737057169593, 783876449182595400
Offset: 0
-
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A078938 := proc(n,c) add( A078937(n,k)*A056857(k+1,c),k=0..n) ; end: A129329 := proc(n) A078938(n+1,3) ; end: seq(A129329(n),n=0..27) ; # R. J. Mathar, May 30 2008
-
A056857[n_, c_] := If[n <= c, 0, BellB[n - 1 - c] Binomial[n - 1, c]];
A078937[n_, c_] := Sum[A056857[n, k] A056857[k + 1, c], {k, 0, n}];
A078938[n_, c_] := Sum[A078937[n, k] A056857[k + 1, c], {k, 0, n}];
a[n_] := A078938[n + 1, 3];
a /@ Range[0, 20] (* Jean-François Alcover, Mar 24 2020, after R. J. Mathar *)
A129331
Second column of PE^4.
Original entry on oeis.org
0, 1, 8, 60, 464, 3780, 32568, 296492, 2845088, 28695060, 303334920, 3351877628, 38622668400, 463036981732, 5764038605528, 74365952622540, 992720923710272, 13690497077256628, 194777994524434344, 2855149354656290716
Offset: 0
-
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A078938 := proc(n,c) add( A078937(n,k)*A056857(k+1,c),k=0..n) ; end: A078939 := proc(n,c) add( A078938(n,k)*A056857(k+1,c),k=0..n) ; end: A129331 := proc(n) A078939(n+1,1) ; end: seq(A129331(n),n=0..25) ; # R. J. Mathar, May 30 2008
-
Table[Sum[BellB[n, 4], {i, 0, n}], {n, -1, 18}] (* Zerinvary Lajos, Jul 16 2009 *)
A129332
Third column of PE^4.
Original entry on oeis.org
0, 0, 1, 12, 120, 1160, 11340, 113988, 1185968, 12802896, 143475300, 1668342060, 20111265768, 251047344600, 3241258872124, 43230289541460, 594927620980320, 8438127851537312, 123214473695309652, 1850390947982126268
Offset: 0
-
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A078938 := proc(n,c) add( A078937(n,k)*A056857(k+1,c),k=0..n) ; end: A078939 := proc(n,c) add( A078938(n,k)*A056857(k+1,c),k=0..n) ; end: A129332 := proc(n) A078939(n+1,2) ; end: seq(A129332(n),n=0..25) ; # R. J. Mathar, May 30 2008
-
A056857[n_, c_] := If[n <= c, 0, BellB[n - 1 - c] Binomial[n - 1, c]];
A078937[n_, c_] := Sum[A056857[n, k] A056857[k + 1, c], {k, 0, n}];
A078938[n_, c_] := Sum[A078937[n, k] A056857[k + 1, c], {k, 0, n}];
A078939[n_, c_] := Sum[A078938[n, k] A056857[k + 1, c], {k, 0, n}];
a[n_] := A078939[n + 1, 2];
a /@ Range[0, 19] (* Jean-François Alcover, Mar 24 2020, after R. J. Mathar *)
A129333
Fourth column of PE^4.
Original entry on oeis.org
0, 0, 0, 1, 16, 200, 2320, 26460, 303968, 3557904, 42676320, 526076100, 6673368240, 87148818328, 1171554274800, 16206294360620, 230561544221120, 3371256518888480, 50628767109223872, 780358333403627796
Offset: 0
-
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A078938 := proc(n,c) add( A078937(n,k)*A056857(k+1,c),k=0..n) ; end: A078939 := proc(n,c) add( A078938(n,k)*A056857(k+1,c),k=0..n) ; end: A129333 := proc(n) A078939(n+1,3) ; end: seq(A129333(n),n=0..25) ; # R. J. Mathar, May 30 2008
-
A056857[n_, c_] := If[n <= c, 0, BellB[n - 1 - c] Binomial[n - 1, c]];
A078937[n_, c_] := Sum[A056857[n, k] A056857[k + 1, c], {k, 0, n}];
A078938[n_, c_] := Sum[A078937[n, k] A056857[k + 1, c], {k, 0, n}];
A078939[n_, c_] := Sum[A078938[n, k] A056857[k + 1, c], {k, 0, n}];
a[n_] := A078939[n + 1, 3];
a /@ Range[0, 19] (* Jean-François Alcover, Mar 24 2020, after R. J. Mathar *)
Original entry on oeis.org
1, 4, 19, 103, 622, 4117, 29521, 227290, 1865881, 16239523, 149142952, 1439618143, 14555631781, 153700654036, 1690684883191, 19328770917499, 229203640111870, 2814018686591089, 35711716110387589, 467766675528462562
Offset: 0
-
A078940 := proc(n) local a,b,i;
a := [seq(2,i=1..n)]; b := [seq(1,i=1..n)];
exp(-x)*hypergeom(a,b,x); round(evalf(subs(x=3,%),66)) end:
seq(A078940(n),n=0..19); # Peter Luschny, Mar 30 2011
-
Table[n!, {n, 0, 20}]CoefficientList[Series[E^(3E^x-3+x), {x, 0, 20}], x]
Table[1/E^3/3*Sum[m^n/m!*3^m,{m,0,Infinity}],{n,1,20}] (* Vaclav Kotesovec, Mar 12 2014 *)
Table[BellB[n+1, 3]/3, {n, 0, 20}] (* Vaclav Kotesovec, Jan 15 2016 *)
nmax = 20; Clear[g]; g[nmax+1] = 1; g[k_] := g[k] = 1 - (k+4)*x - 3*(k+1)*x^2/g[k+1]; CoefficientList[Series[1/g[0], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 15 2016, after Sergei N. Gladkovskii *)
A344735
a(0) = 1; a(n) = 4 * Sum_{k=1..n} binomial(n,k) * a(k-1).
Original entry on oeis.org
1, 4, 24, 156, 1120, 8740, 73384, 657900, 6259184, 62876852, 664134968, 7349666684, 84956020864, 1023006054980, 12802727760840, 166174971580684, 2232866214809360, 31007771007956948, 444360490882720344, 6562410784684023452, 99749853821538893216, 1558780425524233360740
Offset: 0
-
a[0] = 1; a[n_] := a[n] = 4 Sum[Binomial[n, k] a[k - 1], {k, 1, n}]; Table[a[n], {n, 0, 21}]
nmax = 21; A[] = 0; Do[A[x] = 1 + 4 x A[x/(1 - x)]/(1 - x)^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
A335975
Square array T(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of e.g.f. exp(k*(exp(x) - 1) + x).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 11, 15, 1, 1, 5, 19, 47, 52, 1, 1, 6, 29, 103, 227, 203, 1, 1, 7, 41, 189, 622, 1215, 877, 1, 1, 8, 55, 311, 1357, 4117, 7107, 4140, 1, 1, 9, 71, 475, 2576, 10589, 29521, 44959, 21147, 1, 1, 10, 89, 687, 4447, 23031, 88909, 227290, 305091, 115975, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
1, 5, 11, 19, 29, 41, 55, ...
1, 15, 47, 103, 189, 311, 475, ...
1, 52, 227, 622, 1357, 2576, 4447, ...
1, 203, 1215, 4117, 10589, 23031, 44683, ...
1, 877, 7107, 29521, 88909, 220341, 478207, ...
-
T[0, k_] := 1; T[n_, k_] := T[n - 1, k] + k * Sum[T[j, k] * Binomial[n - 1, j], {j, 0, n - 1}]; Table[T[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Jul 03 2020 *)
A335982
Expansion of e.g.f. exp(4 * (1 - exp(-x)) + x).
Original entry on oeis.org
1, 5, 21, 69, 149, 69, -619, -187, 9365, -3515, -193643, 453957, 4704917, -29425595, -83918443, 1640246085, -3184430955, -74516517307, 604223657877, 1324972362053, -52526078298475, 264984579390533, 2477371363954069, -44206576595187899, 133280843118435477
Offset: 0
-
nmax = 24; CoefficientList[Series[Exp[4 (1 - Exp[-x]) + x], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = a[n - 1] + 4 Sum[(-1)^(n - k - 1) Binomial[n - 1, k] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 24}]
A320433
Expansion of e.g.f. exp(4 * (1 - exp(x)) + x).
Original entry on oeis.org
1, -3, 5, 5, -43, -27, 597, 805, -11883, -40475, 265685, 2133157, -3405803, -107760283, -301542315, 4458255397, 42421260949, -45046794011, -3365690666283, -19844416105563, 138274174035221, 2917746747446373, 11092963732101461, -207438902364296411, -3205301465165742187
Offset: 0
-
m = 24; Range[0, m]! * CoefficientList[Series[Exp[4 * (1 - Exp[x]) + x], {x, 0, m}], x] (* Amiram Eldar, Jul 06 2020 *)
Table[Sum[Binomial[n, k] * BellB[k, -4], {k, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Jul 06 2020 *)
-
N=40; x='x+O('x^N); Vec(serlaplace(exp(4*(1-exp(x))+x)))
Comments